Advertisement

Journal of Molecular Medicine

, Volume 96, Issue 10, pp 1095–1106 | Cite as

Oxidative stress-induced miRNAs modulate AKT signaling and promote cellular senescence in uterine leiomyoma

  • Xiuhua Xu
  • J. Julie Kim
  • Yinuo Li
  • Jia Xie
  • Changshun Shao
  • Jian-Jun Wei
Original Article

Abstract

Uterine leiomyomas (ULM) grow under high oxidative stress due to a hypoxic microenvironment and defects in redox metabolism. AKT is one major pathway activated by reactive oxygen species (ROS) that maintains ULM growth and survival. We previously reported that AKT inactivated by AKT inhibitors can significantly induce cellular senescence in ULM cells. Since some miRNAs are induced by AKT inhibitors in an ROS-dependent manner, we proposed that these miRNAs may modulate AKT function and cellular senescence in ULM. We therefore established ex vivo models of a three-dimensional ULM spheroid culture system to study the role of miRNAs in cellular senescence. Four miRNAs, miR-29b, miR-181a, miR-182, and miR-200c, were found to induce cellular senescence in primary ULM and myometrium spheroid cultures when stably overexpressed. miR-181a and miR-182 were found to repress AKT3 and CCND2, respectively. Correspondingly, RNAi of AKT3 or CCND2 also induced cellular senescence and G0/G1 arrest. Thus, miR-181a and miR-182 may drive cellular senescence in ULM by repressing AKT3 and CCND2 activity, respectively. We further demonstrated that senescent ULM cells can be effectively removed by BH3 mimetic ABT263, which provides a new therapeutic venue for the treatment of ULM. Our findings suggest that miRNAs are potent modulators in regulating the ROS-AKT-cell cycle axis in uterine leiomyoma.

Key messages

  • A subset of oxidative stress-induced miRNAs is involved in AKT signaling in uterine leiomyoma.

  • Overexpression of miR-181a and miR-182 resulted in cellular senescence in leiomyoma through repression of AKT3 and CCND2, respectively.

  • Silencing of AKT3 and CCND2 drives leiomyoma cell into senescence and cycle arrest.

  • Application of our newly developed 3D leiomyoma spheroids can provide a quick and reliable ex vivo model for cytopathologic and functional analysis.

  • BH3 mimetics can effectively reduce the viability of miRNA-mediated senescent cells in leiomyoma.

Keywords

Leiomyoma Senescence miR-181a miR-182 AKT3 CCND2 

Notes

Acknowledgements

We thank Drs. Serdar Bulun, Debabrata Chakravarti, and Ping Yin for their valuable scientific comments and technical supports, as well as Mrs. Stacy Ann Kujawa for consenting patients and providing all fresh samples for the study. All immunostains and histology were performed in the Pathology Core Facility.

Funding

This study was supported by NIH P01HD57877, NSFC grant 81572785, and China Scholarship Council.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent were received in all patients included in this study.

Supplementary material

109_2018_1682_MOESM1_ESM.docx (6.9 mb)
ESM 1 (DOCX 7075 kb)

References

  1. 1.
    Baird DD, Dunson DB, Hill MC, Cousins D, Schectman JM (2003) High cumulative incidence of uterine leiomyoma in black and white women: ultrasound evidence. Am J Obstet Gynecol 188:100–107CrossRefPubMedGoogle Scholar
  2. 2.
    Pollard PJ, Briere JJ, Alam NA, Barwell J, Barclay E, Wortham NC, Hunt T, Mitchell M, Olpin S, Moat SJ, Hargreaves IP, Heales SJ, Chung YL, Griffiths JR, Dalgleish A, McGrath JA, Gleeson MJ, Hodgson SV, Poulsom R, Rustin P, Tomlinson IP (2005) Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet 14:2231–2239CrossRefPubMedGoogle Scholar
  3. 3.
    Mayer A, Hockel M, Wree A, Leo C, Horn LC, Vaupel P (2008) Lack of hypoxic response in uterine leiomyomas despite severe tissue hypoxia. Cancer Res 68:4719–4726CrossRefPubMedGoogle Scholar
  4. 4.
    Azimi I, Petersen RM, Thompson EW, Roberts-Thomson SJ, Monteith GR (2017) Hypoxia-induced reactive oxygen species mediate N-cadherin and SERPINE1 expression, EGFR signalling and motility in MDA-MB-468 breast cancer cells. Sci Rep 7:15140CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A 95:11715–11720CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Vidimar V, Gius D, Chakravarti D, Bulun SE, Wei JJ, Kim JJ (2016) Dysfunctional MnSOD leads to redox dysregulation and activation of prosurvival AKT signaling in uterine leiomyomas. Sci Adv 2:e1601132CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sefton EC, Qiang W, Serna V, Kurita T, Wei JJ, Chakravarti D, Kim JJ (2013) MK-2206, an AKT inhibitor, promotes caspase-independent cell death and inhibits leiomyoma growth. Endocrinology 154(11):4046–57Google Scholar
  8. 8.
    Xu X, Lu Z, Qiang W, Vidimar V, Kong B, Kim JJ, Wei JJ (2014) Inactivation of AKT induces cellular senescence in uterine leiomyoma. Endocrinology 155:1510–1519CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Magenta A, Greco S, Gaetano C, Martelli F (2013) Oxidative stress and microRNAs in vascular diseases. Int J Mol Sci 14:17319–17346CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Revelli A, Delle Piane L, Casano S, Molinari E, Massobrio M, Rinaudo P (2009) Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod Biol Endocrinol 7:40CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Davalli P, Mitic T, Caporali A, Lauriola A, D'Arca D (2016) ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxidative Med Cell Longev 2016:3565127CrossRefGoogle Scholar
  12. 12.
    Xu M, Mo YY (2012) The Akt-associated microRNAs. Cell Mol Life Sci 69:3601–3612CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Xu X, Ayub B, Liu Z, Serna VA, Qiang W, Liu Y, Hernando E, Zabludoff S, Kurita T, Kong B, Wei JJ (2014) Anti-miR182 reduces ovarian cancer burden, invasion, and metastasis: an in vivo study in orthotopic xenografts of nude mice. Mol Cancer Ther 13:1729–1739CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Liu Z, Liu J, Segura MF, Shao C, Lee P, Gong Y, Hernando E, Wei JJ (2012) MiR-182 overexpression in tumourigenesis of high-grade serous ovarian carcinoma. J Pathol 228:204–215CrossRefPubMedGoogle Scholar
  15. 15.
    Li X, Zhang J, Gao L, McClellan S, Finan MA, Butler TW, Owen LB, Piazza GA, Xi Y (2012) MiR-181 mediates cell differentiation by interrupting the Lin28 and let-7 feedback circuit. Cell Death Differ 19:378–386CrossRefPubMedGoogle Scholar
  16. 16.
    Wei JJ, Wu X, Peng Y, Shi G, Basturk O, Yang X, Daniels G, Osman I, Ouyang J, Hernando E, Pellicer A, Rhim JS, Melamed J, Lee P (2011) Regulation of HMGA1 expression by microRNA-296 affects prostate cancer growth and invasion. Clin Cancer Res 17:1297–1305CrossRefPubMedGoogle Scholar
  17. 17.
    Wang T, Zhang X, Obijuru L, Laser J, Aris V, Lee P, Mittal K, Soteropoulos P, Wei JJ (2007) A micro-RNA signature associated with race, tumor size, and target gene activity in human uterine leiomyomas. Genes Chromosom Cancer 46:336–347CrossRefPubMedGoogle Scholar
  18. 18.
    Zavadil J, Ye H, Liu Z, Wu J, Lee P, Hernando E, Soteropoulos P, Toruner GA, Wei JJ (2010) Profiling and functional analyses of microRNAs and their target gene products in human uterine leiomyomas. PLoS One 5:e12362CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Yan D, Dong XD, Chen X, Yao S, Wang L, Wang J, Wang C, Hu DN, Qu J, Tu L (2012) Role of microRNA-182 in posterior uveal melanoma: regulation of tumor development through MITF, BCL2 and cyclin D2. PLoS One 7:e40967CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, Janakiraman K, Sharpless NE, Ding S, Feng W, Luo Y, Wang X, Aykin-Burns N, Krager K, Ponnappan U, Hauer-Jensen M, Meng A, Zhou D (2016) Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 22:78–83CrossRefPubMedGoogle Scholar
  21. 21.
    Kennedy AL, Morton JP, Manoharan I, Nelson DM, Jamieson NB, Pawlikowski JS, McBryan T, Doyle B, McKay C, Oien KA, Enders GH, Zhang R, Sansom OJ, Adams PD (2011) Activation of the PIK3CA/AKT pathway suppresses senescence induced by an activated RAS oncogene to promote tumorigenesis. Mol Cell 42:36–49CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lee JJ, Kim BC, Park MJ, Lee YS, Kim YN, Lee BL, Lee JS (2011) PTEN status switches cell fate between premature senescence and apoptosis in glioma exposed to ionizing radiation. Cell Death Differ 18:666–677CrossRefPubMedGoogle Scholar
  23. 23.
    Li G, Luna C, Qiu J, Epstein DL, Gonzalez P (2009) Alterations in microRNA expression in stress-induced cellular senescence. Mech Ageing Dev 130:731–741CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Krishnan K, Steptoe AL, Martin HC, Wani S, Nones K, Waddell N, Mariasegaram M, Simpson PT, Lakhani SR, Gabrielli B, Vlassov A, Cloonan N, Grimmond SM (2013) MicroRNA-182-5p targets a network of genes involved in DNA repair. RNA 19:230–242CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wang L, Huang H, Fan Y, Kong B, Hu H, Hu K, Guo J, Mei Y, Liu WL (2014) Effects of downregulation of microRNA-181a on H2O2-induced H9c2 cell apoptosis via the mitochondrial apoptotic pathway. Oxidative Med Cell Longev 2014:960362Google Scholar
  26. 26.
    Moskwa P, Buffa FM, Pan Y, Panchakshari R, Gottipati P, Muschel RJ, Beech J, Kulshrestha R, Abdelmohsen K, Weinstock DM, Gorospe M, Harris AL, Helleday T, Chowdhury D (2011) miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol Cell 41:210–220CrossRefPubMedGoogle Scholar
  27. 27.
    Liu Y, Qiang W, Xu X, Dong R, Karst AM, Liu Z, Kong B, Drapkin RI, Wei JJ (2015) Role of miR-182 in response to oxidative stress in the cell fate of human fallopian tube epithelial cells. Oncotarget 6:38983–38998PubMedPubMedCentralGoogle Scholar
  28. 28.
    Xu X, Wu J, Li S, Hu Z, Xu X, Zhu Y, Liang Z, Wang X, Lin Y, Mao Y, Chen H, Luo J, Liu B, Zheng X, Xie L (2014) Downregulation of microRNA-182-5p contributes to renal cell carcinoma proliferation via activating the AKT/FOXO3a signaling pathway. Mol Cancer 13:109CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Mirzaa G, Parry DA, Fry AE, Giamanco KA, Schwartzentruber J, Vanstone M, Logan CV, Roberts N, Johnson CA, Singh S, Kholmanskikh SS, Adams C, Hodge RD, Hevner RF, Bonthron DT, KPJ B, Faivre L, Riviere JB, St-Onge J, Gripp KW, Mancini GM, Pang K, Sweeney E, van Esch H, Verbeek N, Wieczorek D, Steinraths M, Majewski J, Consortium FC, Boycot KM, Pilz DT, Ross ME, Dobyns WB, Sheridan EG (2014) De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. Nat Genet 46:510–515CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sherr CJ (1995) D-type cyclins. Trends Biochem Sci 20:187–190CrossRefPubMedGoogle Scholar
  31. 31.
    Magenta A, Dellambra E, Ciarapica R, Capogrossi MC (2016) Oxidative stress, microRNAs and cytosolic calcium homeostasis. Cell Calcium 60:207–217CrossRefPubMedGoogle Scholar
  32. 32.
    Mancini M, Saintigny G, Mahe C, Annicchiarico-Petruzzelli M, Melino G, Candi E (2012) MicroRNA-152 and -181a participate in human dermal fibroblasts senescence acting on cell adhesion and remodeling of the extra-cellular matrix. Aging (Albany NY) 4:843–853CrossRefGoogle Scholar
  33. 33.
    Markopoulos GS, Roupakia E, Tokamani M, Vartholomatos G, Tzavaras T, Hatziapostolou M, Fackelmayer FO, Sandaltzopoulos R, Polytarchou C, Kolettas E (2017) Senescence-associated microRNAs target cell cycle regulatory genes in normal human lung fibroblasts. Exp Gerontol 96:110–122CrossRefPubMedGoogle Scholar
  34. 34.
    Yentrapalli R, Azimzadeh O, Kraemer A, Malinowsky K, Sarioglu H, Becker KF, Atkinson MJ, Moertl S, Tapio S (2015) Quantitative and integrated proteome and microRNA analysis of endothelial replicative senescence. J Proteome 126:12–23CrossRefGoogle Scholar
  35. 35.
    Rippo MR, Olivieri F, Monsurro V, Prattichizzo F, Albertini MC, Procopio AD (2014) MitomiRs in human inflamm-aging: a hypothesis involving miR-181a, miR-34a and miR-146a. Exp Gerontol 56:154–163CrossRefPubMedGoogle Scholar
  36. 36.
    Wu L, Song WY, Xie Y, Hu LL, Hou XM, Wang R, Gao Y, Zhang JN, Zhang L, Li WW, Zhu C, Gao ZY, Sun YP (2018) miR-181a-5p suppresses invasion and migration of HTR-8/SVneo cells by directly targeting IGF2BP2. Cell Death Dis 9:16CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Chuang TD, Khorram O (2016) Mechanisms underlying aberrant expression of miR-29c in uterine leiomyoma. Fertil Steril 105:236–245 e1 CrossRefPubMedGoogle Scholar
  38. 38.
    Marsh EE, Steinberg ML, Parker JB, Wu J, Chakravarti D, Bulun SE (2016) Decreased expression of microRNA-29 family in leiomyoma contributes to increased major fibrillar collagen production. Fertil Steril 106:766–772CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Chuang TD, Panda H, Luo X, Chegini N (2012) miR-200c is aberrantly expressed in leiomyomas in an ethnic-dependent manner and targets ZEBs, VEGFA, TIMP2, and FBLN5. Endocr Relat Cancer 19:541–556CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PathologyNorthwestern University Feinberg School of MedicineChicagoUSA
  2. 2.Key Laboratory of Experimental Teratology Ministry of Education, Department of Molecular Medicine and GeneticsShandong University School of MedicineJinanChina
  3. 3.Department of Reproductive MedicineThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
  4. 4.Department of Obstetrics and Gynecology-Division of Reproductive Science in MedicineNorthwestern University Feinberg School of MedicineChicagoUSA
  5. 5.The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine and State Key Laboratory of Radiation Medicine and RadioprotectionSoochow UniversitySuzhouChina
  6. 6.Department of Pathology, Feinberg School of MedicineNorthwestern UniversityChicagoUSA

Personalised recommendations