Advertisement

Journal of Molecular Medicine

, Volume 96, Issue 9, pp 903–913 | Cite as

Adenosinergic signaling as a target for natural killer cell immunotherapy

  • Jiao Wang
  • Sandro Matosevic
Review

Abstract

Purinergic signaling through adenosine plays a key role in immune regulation. Hypoxia-driven accumulation of extracellular adenosine results in the generation of an immunosuppressive niche that fuels tumor development. Such immunometabolic modulation has shown to be a promising therapeutic target through blockade of adenosine receptors which mediate adenosine’s immunosuppressive function, or cancer-associated ectonucleotidases CD39 and CD73 that catalyze the synthesis of adenosine. Adenosinergic signaling heavily implicates natural killer cells through both direct and indirect effects on their cytolytic activity, expression of cytotoxic granules, interferon-γ, and activating receptors. Continuing work has uncovered multiple checkpoints linked to adenosine within the purinergic signaling cascade as contributing to immune evasion from NK cell effector function. Here, we discuss these checkpoints and the recent body of work that focuses on adenosinergic signaling as a target for natural killer cell of cancer.

Keywords

Adenosinergic signaling Cancer Natural killer cell immunotherapy Immunometabolism 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Kumar V, Sharma A (2009) Adenosine: an endogenous modulator of innate immune system with therapeutic potential. Eur J Pharmacol 616:7–15PubMedCrossRefGoogle Scholar
  2. 2.
    Allard D, Allard B, Gaudreau P-O, Chrobak P, Stagg J (2016) CD73–adenosine: a next-generation target in immuno-oncology. Immunotherapy 8:145–163PubMedCrossRefGoogle Scholar
  3. 3.
    Swart M, Verbrugge I, Beltman JB (2016) Combination approaches with immune-checkpoint blockade in cancer therapy. Front Oncol 6.  https://doi.org/10.3389/fonc.2016.00233
  4. 4.
    Iannone R, Miele L, Maiolino P et al (2014) Adenosine limits the therapeutic effectiveness of anti-CTLA4 mAb in a mouse melanoma model. Am J Cancer Res 4:172–181PubMedPubMedCentralGoogle Scholar
  5. 5.
    Beavis PA, Milenkovski N, Henderson MA, John LB, Allard B, Loi S, Kershaw MH, Stagg J, Darcy PK (2015) Adenosine receptor 2A blockade increases the efficacy of anti-PD-1 through enhanced antitumor T-cell responses. Cancer Immunol Res 3:506–517PubMedCrossRefGoogle Scholar
  6. 6.
    Hoskin DW, Mader JS, Furlong SJ et al (2008) Inhibition of T cell and natural killer cell function by adenosine and its contribution to immune evasion by tumor cells (review). Int J Oncol 32:527–535PubMedGoogle Scholar
  7. 7.
    Guillerey C, Huntington ND, Smyth MJ (2016) Targeting natural killer cells in cancer immunotherapy. Nat Immunol 17:ni.3518CrossRefGoogle Scholar
  8. 8.
    Kärre K (2002) NK cells, MHC class I molecules and the missing self. Scand J Immunol 55:221–228PubMedCrossRefGoogle Scholar
  9. 9.
    De Maria A, Bozzano F, Cantoni C, Moretta L (2011) Revisiting human natural killer cell subset function revealed cytolytic CD56(dim)CD16+ NK cells as rapid producers of abundant IFN-gamma on activation. Proc Natl Acad Sci U S A 108:728–732PubMedCrossRefGoogle Scholar
  10. 10.
    Carotta S (2016) Targeting NK cells for anticancer immunotherapy: clinical and preclinical approaches. Front Immunol 7.  https://doi.org/10.3389/fimmu.2016.00152
  11. 11.
    Wang W, Erbe AK, Hank JA et al (2015) NK cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Front Immunol 6:6Google Scholar
  12. 12.
    Olson JA, Leveson-Gower DB, Gill S, Baker J, Beilhack A, Negrin RS (2010) NK cells mediate reduction of GVHD by inhibiting activated, alloreactive T cells while retaining GVT effects. Blood 115:4293–4301PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Shaffer BC, Hsu KC (2016) How important is NK alloreactivity and KIR in allogeneic transplantation? Best Pract Res Clin Haematol 29:351–358PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Childs RW, Carlsten M (2015) Therapeutic approaches to enhance natural killer cell cytotoxicity against cancer: the force awakens. Nat Rev Drug Discov 14:487–498PubMedCrossRefGoogle Scholar
  15. 15.
    Miller JS, Soignier Y, Panoskaltsis-Mortari A et al (2005) Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105:3051–3057PubMedCrossRefGoogle Scholar
  16. 16.
    Gras Navarro A, Björklund AT, Chekenya M (2015) Therapeutic potential and challenges of natural killer cells in treatment of solid tumors. Front Immunol 6.  https://doi.org/10.3389/fimmu.2015.00202
  17. 17.
    Wrzesinski SH, Wan YY, Flavell RA (2007) Transforming growth factor-beta and the immune response: implications for anticancer therapy. Clin Cancer Res Off J Am Assoc Cancer Res 13:5262–5270CrossRefGoogle Scholar
  18. 18.
    Kremer V, Ligtenberg MA, Zendehdel R, Seitz C, Duivenvoorden A, Wennerberg E, Colón E, Scherman-Plogell AH, Lundqvist A (2017) Genetic engineering of human NK cells to express CXCR2 improves migration to renal cell carcinoma. J Immunother Cancer 5:73PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Balsamo M, Manzini C, Pietra G, Raggi F, Blengio F, Mingari MC, Varesio L, Moretta L, Bosco MC, Vitale M (2013) Hypoxia downregulates the expression of activating receptors involved in NK-cell-mediated target cell killing without affecting ADCC. Eur J Immunol 43:2756–2764PubMedCrossRefGoogle Scholar
  20. 20.
    Nizet V, Johnson RS (2009) Interdependence of hypoxic and innate immune responses. Nat Rev Immunol 9:609–617PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148:399–408PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Chakraborty D, Rumi MAK, Soares M (2012) NK cells, hypoxia and trophoblast cell differentiation. Cell Cycle 11:2427–2430PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Krzywinska E, Kantari-Mimoun C, Kerdiles Y, Sobecki M, Isagawa T, Gotthardt D, Castells M, Haubold J, Millien C, Viel T, Tavitian B, Takeda N, Fandrey J, Vivier E, Sexl V, Stockmann C (2017) Loss of HIF-1α in natural killer cells inhibits tumour growth by stimulating non-productive angiogenesis. Nat Commun 8:1597PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Synnestvedt K, Furuta GT, Comerford KM, Louis N, Karhausen J, Eltzschig HK, Hansen KR, Thompson LF, Colgan SP (2002) Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J Clin Invest 110:993–1002PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Pelleg A, Porter RS (1990) The pharmacology of adenosine. Pharmacother J Hum Pharmacol Drug Ther 10:157–174Google Scholar
  26. 26.
    Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MKK, Huang X, Caldwell S, Liu K, Smith P, Chen JF, Jackson EK, Apasov S, Abrams S, Sitkovsky M (2006) A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci U S A 103:13132–13137PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kumar V (2013) Adenosine as an endogenous immunoregulator in cancer pathogenesis: where to go? Purinergic Signal 9:145–165PubMedCrossRefGoogle Scholar
  28. 28.
    Phatarpekar PV, Wen J, Xia Y (2010) Role of adenosine signaling in penile erection and erectile disorders. J Sex Med 7:3553–3564PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Taruno A (2018) ATP release channels. Int J Mol Sci 19.  https://doi.org/10.3390/ijms19030808
  30. 30.
    Blay J (2011) Adenosine and tumor microenvironment. In: Encyclopedia of cancer. Springer, Heidelberg, pp 49–52CrossRefGoogle Scholar
  31. 31.
    Blay J, White TD, Hoskin DW (1997) The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res 57:2602–2605PubMedGoogle Scholar
  32. 32.
    Ghiringhelli F, Bruchard M, Chalmin F, Rébé C (2012) Production of adenosine by ectonucleotidases: a key factor in tumor immunoescape. In: BioMed Res. Int. https://www.hindawi.com/journals/bmri/2012/473712/. Accessed 16 May 2018
  33. 33.
    Boison D (2013) Adenosine kinase: exploitation for therapeutic gain. Pharmacol Rev 65:906–943PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kloor D, Osswald H (2004) S-Adenosylhomocysteine hydrolase as a target for intracellular adenosine action. Trends Pharmacol Sci 25:294–297PubMedCrossRefGoogle Scholar
  35. 35.
    Thorn JA, Jarvis SM (1996) Adenosine transporters. Gen Pharmacol 27:613–620PubMedCrossRefGoogle Scholar
  36. 36.
    Aymerich I, Foufelle F, Ferré P, Casado FJ, Pastor-Anglada M (2006) Extracellular adenosine activates AMP-dependent protein kinase (AMPK). J Cell Sci 119:1612–1621PubMedCrossRefGoogle Scholar
  37. 37.
    Saitoh M, Nagai K, Nakagawa K, Yamamura T, Yamamoto S, Nishizaki T (2004) Adenosine induces apoptosis in the human gastric cancer cells via an intrinsic pathway relevant to activation of AMP-activated protein kinase. Biochem Pharmacol 67:2005–2011PubMedCrossRefGoogle Scholar
  38. 38.
    Yang D, Yaguchi T, Nakano T, Nishizaki T (2011) Adenosine activates AMPK to phosphorylate Bcl-XL responsible for mitochondrial damage and DIABLO release in HuH-7 cells. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 27:71–78CrossRefGoogle Scholar
  39. 39.
    Villanueva-Paz M, Cotán D, Garrido-Maraver J et al (2016) AMPK regulation of cell growth, apoptosis, autophagy, and bioenergetics. EXS 107:45–71PubMedGoogle Scholar
  40. 40.
    Patel VA, Massenburg D, Vujicic S, Feng L, Tang M, Litbarg N, Antoni A, Rauch J, Lieberthal W, Levine JS (2015) Apoptotic cells activate AMP-activated protein kinase (AMPK) and inhibit epithelial cell growth without change in intracellular energy stores. J Biol Chem 290:22352–22369PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, Dupuy F, Chambers C, Fuerth BJ, Viollet B, Mamer OA, Avizonis D, DeBerardinis RJ, Siegel PM, Jones RG (2013) AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab 17:113–124PubMedCrossRefGoogle Scholar
  42. 42.
    He X, Li C, Ke R, Luo L, Huang D (2017) Down-regulation of adenosine monophosphate–activated protein kinase activity: a driver of cancer. Tumor Biol 39:1010428317697576Google Scholar
  43. 43.
    Nogi Y, Kanno T, Nakano T, Fujita Y, Tabata C, Fukuoka K, Gotoh A, Nishizaki T (2012) AMP converted from intracellularly transported adenosine upregulates p53 expression to induce malignant pleural mesothelioma cell apoptosis. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 30:61–74CrossRefGoogle Scholar
  44. 44.
    Bahreyni A, Samani SS, Rahmani F, Behnam-Rassouli R, Khazaei M, Ryzhikov M, Parizadeh MR, Avan A, Hassanian SM (2018) Role of adenosine signaling in the pathogenesis of breast cancer. J Cell Physiol 233:1836–1843PubMedCrossRefGoogle Scholar
  45. 45.
    Virtanen SS, Kukkonen-Macchi A, Vainio M, Elima K, Harkonen PL, Jalkanen S, Yegutkin GG (2014) Adenosine inhibits tumor cell invasion via receptor-independent mechanisms. Mol Cancer Res 12:1863–1874PubMedCrossRefGoogle Scholar
  46. 46.
    Merighi S, Mirandola P, Varani K, Gessi S, Leung E, Baraldi PG, Tabrizi MA, Borea PA (2003) A glance at adenosine receptors: novel target for antitumor therapy. Pharmacol Ther 100:31–48PubMedCrossRefGoogle Scholar
  47. 47.
    Whiteside TL (2017) Targeting adenosine in cancer immunotherapy: a review of recent progress. Expert Rev Anticancer Ther 17:527–535PubMedCrossRefGoogle Scholar
  48. 48.
    Trincavelli ML, Daniele S, Martini C (2010) Adenosine receptors: what we know and what we are learning. Curr Top Med Chem 10:860–877PubMedCrossRefGoogle Scholar
  49. 49.
    Sheth S, Brito R, Mukherjea D, Rybak L, Ramkumar V (2014) Adenosine receptors: expression, function and regulation. Int J Mol Sci 15:2024–2052PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Gessi S, Merighi S, Sacchetto V, Simioni C, Borea PA (2011) Adenosine receptors and cancer. Biochim Biophys Acta 1808:1400–1412PubMedCrossRefGoogle Scholar
  51. 51.
    Kazemi MH, Mohseni SR, Hojjat-Farsangi M et al (2018) Adenosine and adenosine receptors in the immunopathogenesis and treatment of cancer. J Cell Physiol 233:2032–2057PubMedCrossRefGoogle Scholar
  52. 52.
    Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Muller CE (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors--an update. Pharmacol Rev 63:1–34PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Klinger M, Freissmuth M, Nanoff C (2002) Adenosine receptors: G protein-mediated signalling and the role of accessory proteins. Cell Signal 14:99–108PubMedCrossRefGoogle Scholar
  54. 54.
    Cekic C, Linden J (2016) Purinergic regulation of the immune system. Nat Rev Immunol 16:177–192PubMedCrossRefGoogle Scholar
  55. 55.
    de Andrade MP, Coutinho-Silva R, Savio LEB (2017) Multifaceted effects of extracellular adenosine triphosphate and adenosine in the tumor-host interaction and therapeutic perspectives. Front Immunol 8:1526CrossRefGoogle Scholar
  56. 56.
    Ciruela F, Albergaria C, Soriano A, Cuffí L, Carbonell L, Sánchez S, Gandía J, Fernández-Dueñas V (2010) Adenosine receptors interacting proteins (ARIPs): behind the biology of adenosine signaling. Biochim Biophys Acta 1798:9–20PubMedCrossRefGoogle Scholar
  57. 57.
    Haskó G, Linden J, Cronstein B, Pacher P (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 7:759–770PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Aherne CM, Kewley EM, Eltzschig HK (2011) The resurgence of A2B adenosine receptor signaling. Biochim Biophys Acta Biomembr 1808:1329–1339CrossRefGoogle Scholar
  59. 59.
    Zarek PE, Powell JD (2007) Adenosine and anergy. Autoimmunity 40:425–432PubMedCrossRefGoogle Scholar
  60. 60.
    Ohta A, Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414:916–920PubMedCrossRefGoogle Scholar
  61. 61.
    Sereda MJ, Bradding P, Vial C (2011) Adenosine potentiates human lung mast cell tissue plasminogen activator activity. J Immunol 186:1209–1217PubMedCrossRefGoogle Scholar
  62. 62.
    Rudich N, Ravid K, Sagi-Eisenberg R (2012) Mast cell adenosine receptors function: a focus on the A3 adenosine receptor and inflammation. Front Immunol 3.  https://doi.org/10.3389/fimmu.2012.00134
  63. 63.
    Gallardo-Soler A, Gómez-Nieto C, Campo ML, Marathe C, Tontonoz P, Castrillo A, Corraliza I (2008) Arginase I induction by modified lipoproteins in macrophages: a peroxisome proliferator-activated receptor-γ/δ-mediated effect that links lipid metabolism and immunity. Mol Endocrinol 22:1394–1402PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Urso ML, Wang R, Zambraski EJ, Liang BT (2012) Adenosine A3 receptor stimulation reduces muscle injury following physical trauma and is associated with alterations in the MMP/TIMP response. J Appl Physiol Bethesda Md 1985 112:658–670Google Scholar
  65. 65.
    Baram D, Dekel O, Mekori YA, Sagi-Eisenberg R (2010) Activation of mast cells by trimeric G protein Gi3; coupling to the A3 adenosine receptor directly and upon T cell contact. J Immunol 184:3677–3688PubMedCrossRefGoogle Scholar
  66. 66.
    Salmon JE, Brogle N, Brownlie C et al (1993) Human mononuclear phagocytes express adenosine A1 receptors. A novel mechanism for differential regulation of Fc gamma receptor function. J Immunol 151:2775–2785PubMedGoogle Scholar
  67. 67.
    Schnurr M, Toy T, Shin A et al (2004) Role of adenosine receptors in regulating chemotaxis and cytokine production of plasmacytoid dendritic cells. Blood 103:1391–1397PubMedCrossRefGoogle Scholar
  68. 68.
    Teng B, Smith JD, Rosenfeld ME, Robinet P, Davis ME, Morrison RR, Mustafa SJ (2014) A1 adenosine receptor deficiency or inhibition reduces atherosclerotic lesions in apolipoprotein E deficient mice. Cardiovasc Res 102:157–165PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Cronstein BN, Levin RI, Philips M et al (1992) Neutrophil adherence to endothelium is enhanced via adenosine A1 receptors and inhibited via adenosine A2 receptors. J Immunol Baltim Md 1950 148:2201–2206Google Scholar
  70. 70.
    Armstrong JM, Chen JF, Schwarzschild MA et al (2001) Gene dose effect reveals no Gs-coupled A2A adenosine receptor reserve in murine T-lymphocytes: studies of cells from A2A-receptor-gene-deficient mice. Biochem J 354:123–130PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Petrova V, Annicchiarico-Petruzzelli M, Melino G, Amelio I (2018) The hypoxic tumour microenvironment. Oncogenesis 7:10PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Semenza GL (2012) Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 33:207–214PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Leung E, MacLennan S, Baraldi PG, Borea PA (2005) A3 adenosine receptors modulate hypoxia-inducible factor-1a expression in human A375 melanoma cells. Neoplasia 7:894–903PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Hellström I, Hellström KE, Pierce GE, Yang JPS (1968) Cellular and humoral immunity to different types of human neoplasms. Nature 220:1352–1354PubMedCrossRefGoogle Scholar
  75. 75.
    Hatfield SM, Sitkovsky M (2015) Oxygenation to improve cancer vaccines, adoptive cell transfer and blockade of immunological negative regulators. Oncoimmunology 4.  https://doi.org/10.1080/2162402X.2015.1052934
  76. 76.
    Young A, Mittal D, Stagg J, Smyth MJ (2014) Targeting cancer-derived adenosine: new therapeutic approaches. Cancer Discov 4:879–888PubMedCrossRefGoogle Scholar
  77. 77.
    Novitskiy SV, Ryzhov S, Zaynagetdinov R, Goldstein AE, Huang Y, Tikhomirov OY, Blackburn MR, Biaggioni I, Carbone DP, Feoktistov I, Dikov MM (2008) Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 112:1822–1831PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Ohta A, Sitkovsky M (2014) Extracellular adenosine-mediated modulation of regulatory T cells. Front Immunol 5:5CrossRefGoogle Scholar
  79. 79.
    Zarek PE, Huang CT, Lutz ER, Kowalski J, Horton MR, Linden J, Drake CG, Powell JD (2008) A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood 111:251–259PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Cekic C, Day Y-J, Sag D, Linden J (2014) Myeloid expression of adenosine A2A receptor suppresses T and NK cell responses in the solid tumor microenvironment. Cancer Res 74:7250–7259PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Ben Addi A, Lefort A, Hua X et al (2008) Modulation of murine dendritic cell function by adenine nucleotides and adenosine: involvement of the A(2B) receptor. Eur J Immunol 38:1610–1620PubMedCrossRefGoogle Scholar
  82. 82.
    Antonioli L, Pacher P, Vizi ES, Haskó G (2013) CD39 and CD73 in immunity and inflammation. Trends Mol Med 19:355–367PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, Kuchroo VK, Strom TB, Robson SC (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204:1257–1265PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783:673–694PubMedCrossRefGoogle Scholar
  85. 85.
    Schetinger MRC, Morsch VM, Bonan CD, Wyse ATS (2007) NTPDase and 5′-nucleotidase activities in physiological and disease conditions: new perspectives for human health. BioFactors Oxf Engl 31:77–98CrossRefGoogle Scholar
  86. 86.
    Deaglio S, Robson SC (2011) Ectonucleotidases as regulators of purinergic signaling in thrombosis, inflammation, and immunity. Adv Pharmacol San Diego Calif 61:301–332CrossRefGoogle Scholar
  87. 87.
    Liao H, Hyman MC, Baek AE, Fukase K, Pinsky DJ (2010) cAMP/CREB-mediated transcriptional regulation of ectonucleoside triphosphate diphosphohydrolase 1 (CD39) expression. J Biol Chem 285:14791–14805PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Eltzschig HK, Köhler D, Eckle T et al (2009) Central role of Sp1-regulated CD39 in hypoxia/ischemia protection. Blood 113:224–232PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Kordaß T, Osen W, Eichmüller SB (2018) Controlling the immune suppressor: transcription factors and microRNAs regulating CD73/NT5E. Front Immunol 9.  https://doi.org/10.3389/fimmu.2018.00813
  90. 90.
    Lu X-X, Chen Y-T, Feng B et al (2013) Expression and clinical significance of CD73 and hypoxia-inducible factor-1α in gastric carcinoma. World J Gastroenterol: WJG 19:1912–1918PubMedCrossRefGoogle Scholar
  91. 91.
    Wu X-R, He X-S, Chen Y-F, Yuan RX, Zeng Y, Lian L, Zou YF, Lan N, Wu XJ, Lan P (2012) High expression of CD73 as a poor prognostic biomarker in human colorectal cancer. J Surg Oncol 106:130–137PubMedCrossRefGoogle Scholar
  92. 92.
    Häusler SFM, Montalbán del Barrio I, Strohschein J, Anoop Chandran P, Engel JB, Hönig A, Ossadnik M, Horn E, Fischer B, Krockenberger M, Heuer S, Seida AA, Junker M, Kneitz H, Kloor D, Klotz KN, Dietl J, Wischhusen J (2011) Ectonucleotidases CD39 and CD73 on OvCA cells are potent adenosine-generating enzymes responsible for adenosine receptor 2A-dependent suppression of T cell function and NK cell cytotoxicity. Cancer Immunol Immunother 60:1405–1418PubMedCrossRefGoogle Scholar
  93. 93.
    Bonnefoy N, Bastid J, Alberici G, et al (2015) CD39: a complementary target to immune checkpoints to counteract tumor-mediated immunosuppression. Oncoimmunology 4.  https://doi.org/10.1080/2162402X.2014.1003015
  94. 94.
    Bastid J, Regairaz A, Bonnefoy N, Dejou C, Giustiniani J, Laheurte C, Cochaud S, Laprevotte E, Funck-Brentano E, Hemon P, Gros L, Bec N, Larroque C, Alberici G, Bensussan A, Eliaou JF (2015) Inhibition of CD39 enzymatic function at the surface of tumor cells alleviates their immunosuppressive activity. Cancer Immunol Res 3:254–265PubMedCrossRefGoogle Scholar
  95. 95.
    Antonioli L, Yegutkin GG, Pacher P, Blandizzi C, Haskó G (2016) Anti-CD73 in cancer immunotherapy: awakening new opportunities. Trends Cancer 2:95–109PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Zhang B (2010) CD73: a novel target for cancer immunotherapy. Cancer Res 70:6407–6411PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Gao Z, Dong K, Zhang H (2014) The roles of CD73 in cancer. In: BioMed Res. Int. https://www.hindawi.com/journals/bmri/2014/460654/. Accessed 18 May 2018
  98. 98.
    Buisseret L, Pommey S, Allard B, Garaud S, Bergeron M, Cousineau I, Ameye L, Bareche Y, Paesmans M, Crown JPA, di Leo A, Loi S, Piccart-Gebhart M, Willard-Gallo K, Sotiriou C, Stagg J (2018) Clinical significance of CD73 in triple-negative breast cancer: multiplex analysis of a phase III clinical trial. Ann Oncol 29:1056–1062PubMedCrossRefGoogle Scholar
  99. 99.
    Allard B, Longhi MS, Robson SC, Stagg J (2017) The ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targets. Immunol Rev 276:121–144PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Zhao H, Bo C, Kang Y, Li H (2017) What else can CD39 tell us? Front Immunol 8.  https://doi.org/10.3389/fimmu.2017.00727
  101. 101.
    Bastid J, Cottalorda-Regairaz A, Alberici G, Bonnefoy N, Eliaou JF, Bensussan A (2013) ENTPD1/CD39 is a promising therapeutic target in oncology. Oncogene 32:1743–1751PubMedCrossRefGoogle Scholar
  102. 102.
    Thompson LF, Eltzschig HK, Ibla JC, van de Wiele CJ, Resta R, Morote-Garcia JC, Colgan SP (2004) Crucial role for ecto-5′-nucleotidase (CD73) in vascular leakage during hypoxia. J Exp Med 200:1395–1405PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Serra S, Vaisitti T, Audrito V, Bologna C, Buonincontri R, Chen SS, Arruga F, Brusa D, Coscia M, Jaksic O, Inghirami G, Rossi D, Furman RR, Robson SC, Gaidano G, Chiorazzi N, Deaglio S (2016) Adenosine signaling mediates hypoxic responses in the chronic lymphocytic leukemia microenvironment. Blood Adv 1:47–61PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Hatfield SM, Kjaergaard J, Lukashev D, Belikoff B, Schreiber TH, Sethumadhavan S, Abbott R, Philbrook P, Thayer M, Shujia D, Rodig S, Kutok JL, Ren J, Ohta A, Podack ER, Karger B, Jackson EK, Sitkovsky M (2014) Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1α-dependent and extracellular adenosine-mediated tumor protection. J Mol Med Berl Ger 92:1283–1292CrossRefGoogle Scholar
  105. 105.
    Bowser JL, Blackburn MR, Shipley GL, Molina JG, Dunner K Jr, Broaddus RR (2016) Loss of CD73-mediated actin polymerization promotes endometrial tumor progression. J Clin Invest 126:220–238PubMedCrossRefGoogle Scholar
  106. 106.
    Li J, Wang L, Chen X, Li L, Li Y, Ping Y, Huang L, Yue D, Zhang Z, Wang F, Li F, Yang L, Huang J, Yang S, Li H, Zhao X, Dong W, Yan Y, Zhao S, Huang B, Zhang B, Zhang Y (2017) CD39/CD73 upregulation on myeloid-derived suppressor cells via TGF-β-mTOR-HIF-1 signaling in patients with non-small cell lung cancer. OncoImmunology 6:e1320011PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Raskovalova T, Lokshin A, Huang X, Jackson EK, Gorelik E (2006) Adenosine-mediated inhibition of cytotoxic activity and cytokine production by IL-2/NKp46-activated NK cells: involvement of protein kinase A isozyme I (PKA I). Immunol Res 36:91–99PubMedCrossRefGoogle Scholar
  108. 108.
    Miller JS, Cervenka T, Lund J et al (1999) Purine metabolites suppress proliferation of human NK cells through a lineage-specific purine receptor. J Immunol Baltim Md 1950 162:7376–7382Google Scholar
  109. 109.
    Williams BA, Manzer A, Blay J, Hoskin DW (1997) Adenosine acts through a novel extracellular receptor to inhibit granule exocytosis by natural killer cells. Biochem Biophys Res Commun 231:264–269PubMedCrossRefGoogle Scholar
  110. 110.
    Hong C-S, Sharma P, Yerneni SS, Simms P, Jackson EK, Whiteside TL, Boyiadzis M (2017) Circulating exosomes carrying an immunosuppressive cargo interfere with cellular immunotherapy in acute myeloid leukemia. Sci Rep 7:14684PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Ma S-R, Deng W-W, Liu J-F, Mao L, Yu GT, Bu LL, Kulkarni AB, Zhang WF, Sun ZJ (2017) Blockade of adenosine A2A receptor enhances CD8+ T cells response and decreases regulatory T cells in head and neck squamous cell carcinoma. Mol Cancer 16:99PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Mediavilla-Varela M, Castro J, Chiappori A, Noyes D, Hernandez DC, Allard B, Stagg J, Antonia SJ (2017) A novel antagonist of the immune checkpoint protein adenosine A2a receptor restores tumor-infiltrating lymphocyte activity in the context of the tumor microenvironment. Neoplasia 19:530–536PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Waickman AT, Alme A, Senaldi L, Zarek PE, Horton M, Powell JD (2012) Enhancement of tumor immunotherapy by deletion of the A2A adenosine receptor. Cancer Immunol Immunother 61:917–926PubMedCrossRefGoogle Scholar
  114. 114.
    Huang S, Apasov S, Koshiba M, Sitkovsky M (1997) Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood 90:1600–1610PubMedGoogle Scholar
  115. 115.
    Wehbi VL, Taskén K (2016) Molecular mechanisms for cAMP-mediated immunoregulation in T cells – role of anchored protein kinase A signaling units. Front Immunol 7:7CrossRefGoogle Scholar
  116. 116.
    Zhang H, Conrad DM, Butler JJ et al (2004) Adenosine acts through A2 receptors to inhibit IL-2-induced tyrosine phosphorylation of STAT5 in T lymphocytes: role of cyclic adenosine 3′,5′-monophosphate and phosphatases. J Immunol Baltim Md 1950 173:932–944Google Scholar
  117. 117.
    Ohta A, Ohta A, Madasu M, Kini R, Subramanian M, Goel N, Sitkovsky M (2009) A2A adenosine receptor may allow expansion of T cells lacking effector functions in extracellular adenosine-rich microenvironments. J Immunol Baltim Md 1950 183:5487–5493Google Scholar
  118. 118.
    Young A, Ngiow SF, Gao Y, Patch AM, Barkauskas DS, Messaoudene M, Lin G, Coudert JD, Stannard KA, Zitvogel L, Degli-Esposti MA, Vivier E, Waddell N, Linden J, Huntington ND, Souza-Fonseca-Guimaraes F, Smyth MJ (2018) A2AR adenosine signaling suppresses natural killer cell maturation in the tumor microenvironment. Cancer Res 78:1003–1016PubMedCrossRefGoogle Scholar
  119. 119.
    Mittal D, Young A, Stannard K, Yong M, Teng MWL, Allard B, Stagg J, Smyth MJ (2014) Antimetastatic effects of blocking PD-1 and the adenosine A2A receptor. Cancer Res 74:3652–3658PubMedCrossRefGoogle Scholar
  120. 120.
    Cekic C, Linden J (2014) Adenosine A2A receptors intrinsically regulate CD8+ T cells in the tumor microenvironment. Cancer Res 74:7239–7249PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Beavis PA, Divisekera U, Paget C, Chow MT, John LB, Devaud C, Dwyer K, Stagg J, Smyth MJ, Darcy PK (2013) Blockade of A2A receptors potently suppresses the metastasis of CD73+ tumors. Proc Natl Acad Sci U S A 110:14711–14716PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Fishman P, Bar-Yehuda S, Madi L, Cohn I (2002) A3 adenosine receptor as a target for cancer therapy. Anti-Cancer Drugs 13:437–443PubMedCrossRefGoogle Scholar
  123. 123.
    Harish A, Hohana G, Fishman P et al (2003) A3 adenosine receptor agonist potentiates natural killer cell activity. Int J Oncol 23:1245–1249PubMedGoogle Scholar
  124. 124.
    Jeffe F, Stegmann KA, Broelsch F, Manns MP, Cornberg M, Wedemeyer H (2009) Adenosine and IFN-{alpha} synergistically increase IFN-gamma production of human NK cells. J Leukoc Biol 85:452–461PubMedCrossRefGoogle Scholar
  125. 125.
    Wallace KL, Linden J (2010) Adenosine A2A receptors induced on iNKT and NK cells reduce pulmonary inflammation and injury in mice with sickle cell disease. Blood 116:5010–5020PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Wang L, Fan J, Thompson LF, Zhang Y, Shin T, Curiel TJ, Zhang B (2011) CD73 has distinct roles in nonhematopoietic and hematopoietic cells to promote tumor growth in mice. J Clin Invest 121:2371–2382PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Stagg J, Divisekera U, Duret H, Sparwasser T, Teng MWL, Darcy PK, Smyth MJ (2011) CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis. Cancer Res 71:2892–2900PubMedCrossRefGoogle Scholar
  128. 128.
    Sun X, Wu Y, Gao W, Enjyoji K, Csizmadia E, Müller CE, Murakami T, Robson SC (2010) CD39/ENTPD1 expression by CD4+Foxp3+ regulatory T cells promotes hepatic metastatic tumor growth in mice. Gastroenterology 139:1030–1040PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Terp MG, Olesen KA, Arnspang EC, Lund RR, Lagerholm BC, Ditzel HJ, Leth-Larsen R (2013) Anti-human CD73 monoclonal antibody inhibits metastasis formation in human breast cancer by inducing clustering and internalization of CD73 expressed on the surface of cancer cells. J Immunol Baltim Md 1950 191:4165–4173Google Scholar
  130. 130.
    Hay CM, Sult E, Huang Q, Mulgrew K, Fuhrmann SR, McGlinchey KA, Hammond SA, Rothstein R, Rios-Doria J, Poon E, Holoweckyj N, Durham NM, Leow CC, Diedrich G, Damschroder M, Herbst R, Hollingsworth RE, Sachsenmeier KF (2016) Targeting CD73 in the tumor microenvironment with MEDI9447. Oncoimmunology 5:e1208875PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Young A, Ngiow SF, Barkauskas DS, Sult E, Hay C, Blake SJ, Huang Q, Liu J, Takeda K, Teng MWL, Sachsenmeier K, Smyth MJ (2016) Co-inhibition of CD73 and A2AR adenosine signaling improves anti-tumor immune responses. Cancer Cell 30:391–403PubMedCrossRefGoogle Scholar
  132. 132.
    Häusler SF, Del Barrio IM, Diessner J et al (2014) Anti-CD39 and anti-CD73 antibodies A1 and 7G2 improve targeted therapy in ovarian cancer by blocking adenosine-dependent immune evasion. Am J Transl Res 6:129–139PubMedPubMedCentralGoogle Scholar
  133. 133.
    Stagg J, Divisekera U, McLaughlin N, Sharkey J, Pommey S, Denoyer D, Dwyer KM, Smyth MJ (2010) Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad Sci U S A 107:1547–1552PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Chatterjee D, Tufa DM, Baehre H, Hass R, Schmidt RE, Jacobs R (2014) Natural killer cells acquire CD73 expression upon exposure to mesenchymal stem cells. Blood 123:594–595PubMedCrossRefGoogle Scholar
  135. 135.
    Morandi F, Horenstein AL, Chillemi A, et al (2015) CD56brightCD16− NK cells produce adenosine through a CD38-mediated pathway and act as regulatory cells inhibiting autologous CD4+ T cell proliferation. J Immunol 1500591.  https://doi.org/10.4049/jimmunol.1500591
  136. 136.
    Sauer AV, Brigida I, Carriglio N, Aiuti A (2012) Autoimmune dysregulation and purine metabolism in adenosine deaminase deficiency. Front Immunol 3.  https://doi.org/10.3389/fimmu.2012.00265
  137. 137.
    Aghaei M, Karami-Tehrani F, Salami S, Atri M (2005) Adenosine deaminase activity in the serum and malignant tumors of breast cancer: the assessment of isoenzyme ADA1 and ADA2 activities. Clin Biochem 38:887–891PubMedCrossRefGoogle Scholar
  138. 138.
    Aghaei M, Karami-Tehrani F, Salami S, Atri M (2010) Diagnostic value of adenosine deaminase activity in benign and malignant breast tumors. Arch Med Res 41:14–18PubMedCrossRefGoogle Scholar
  139. 139.
    Raskovalova T, Huang X, Sitkovsky M, Zacharia LC, Jackson EK, Gorelik E (2005) Gs protein-coupled adenosine receptor signaling and lytic function of activated NK cells. J Immunol 175:4383–4391PubMedCrossRefGoogle Scholar
  140. 140.
    Nakajima Y, Kanno T, Nagaya T, Kuribayashi K, Nakano T, Gotoh A, Nishizaki T (2015) Adenosine deaminase inhibitor EHNA exhibits a potent anticancer effect against malignant pleural mesothelioma. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 35:51–60CrossRefGoogle Scholar
  141. 141.
    Saito M, Yaguchi T, Yasuda Y, Nakano T, Nishizaki T (2010) Adenosine suppresses CW2 human colonic cancer growth by inducing apoptosis via A(1) adenosine receptors. Cancer Lett 290:211–215PubMedCrossRefGoogle Scholar
  142. 142.
    Serra S, Bologna C, Londono L, Wang L, Shepard M, Rosengren S, Thanos C, Deaglio S (2017) Abstract 5583: Pegylated adenosine deaminase 2 (PEG-ADA2) abrogates the cytoprotective effects of adenosine against chronic lymphocytic leukemia cells. Cancer Res 77:5583–5583CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Industrial and Physical PharmacyPurdue UniversityWest LafayetteUSA
  2. 2.Purdue Center for Cancer ResearchPurdue UniversityWest LafayetteUSA

Personalised recommendations