Advertisement

Journal of Molecular Medicine

, Volume 96, Issue 10, pp 1025–1037 | Cite as

Low cleaved caspase-7 levels indicate unfavourable outcome across all breast cancers

  • Andreas U. Lindner
  • Federico Lucantoni
  • Damir Varešlija
  • Alexa Resler
  • Brona M. Murphy
  • William M. Gallagher
  • Arnold D. K. Hill
  • Leonie S. Young
  • Jochen H. M. Prehn
Original Article

Abstract

Elevated levels of the anti-apoptotic BCL2 protein associate with favourable outcome in breast cancer. We investigated whether executioner caspase activation downstream of mitochondrial apoptosis was associated with, or independent, of BCL2’s prognostic signature in breast cancer. Levels of pro- and anti-apoptotic BCL2 family proteins were quantified in triple negative breast cancer (TNBC) samples and utilised to calculate BCL2 profiles of 845 breast cancer patients. Biomarkers including single apoptosis proteins and network-enriched apoptosis system signatures were evaluated using uni- and multi-variate Cox-models. In both TNBC and non-TNBC breast cancer, the anti-apoptotic BCL2 protein was particularly abundant when compared to other solid tumours. High BCL2 protein levels were prognostic of favourable outcome across all breast cancers (HR 0.4, 95% CI 0.2–0.6, Wald p < 0.0001). Although BCL2 and cleaved caspase-7 levels were negatively correlated, levels of cleaved caspase-7 were also associated with favourable outcome (HR 0.4, 95% CI 0.3–0.7, Wald p = 0.001). A combination of low BCL2 and low cleaved caspase-7 protein levels was highly prognostic of unfavourable outcome across all breast cancers (HR 11.29, 95% CI 2.20–58.23, Wald p = 0.01). A combination of BCL2 and cleaved caspase-7 levels is a promising prognostic biomarker in breast cancer patients.

Key message

  • BCL2 levels are elevated in breast cancer where they are marker of good prognosis.

  • BCL2 and active caspase levels correlate negatively; yet, active caspases indicate good outcome.

  • Low BCL2 and low caspase-7 are highly prognostic of unfavourable outcome across all breast cancers.

  • BCL2 levels indicate molecular subtype and tumour proliferation status in breast cancer.

Keywords

Breast cancer BCL-2 proteins Apoptosis Cell death Caspases Systems biology 

Abbreviations

a.U.

arbitrary unit

ANOVA

analysis of variance

BAK, BCL2

antagonist/killer 1 (BAK1)

BAX, BCL2

associated X, apoptosis regulator (BCL2L4)

BCL2

B-cell lymphoma 2

BCL(X)L

B-cell lymphoma-extra large (BCL2L1)

BIM

Bcl-2 interacting mediator of cell death (BCL2L11)

BH3

BCL2 homology 3rd domain

CI

confidence interval

DFS

disease-free survival

ER

oestrogen receptor 1 (ESR1)

HER2

Receptor tyrosine-protein kinase erbB-2 (ERBB2)

HR

hazard ratio

IAP

inhibitor of apoptosis

IHC

immunohistochemistry

MCL1

myeloid cell leukaemia sequence 1 (BCL2L3)

MOMP

mitochondrial outer membrane permeabilisation

nM

nanomolar (10−9 mol/L)

NOXA

horbol-12-Myristate-13-Acetate-Induced protein 1 (PMAIP1)

OS

overall survival

p

probability value

PAM50

50-gene signature

PHA

proportional hazards assumption

PR

progesterone receptor (PGR)

PI3K

phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit

PUMA

p53 upregulated modulator of apoptosis (BBC3)

RPPA

reverse protein phase array

TCGA

The Cancer Genome Atlas

TNBC

triple negative breast cancer

TNM

tumour/lymph node/metastasis staging system

Tukey HSD

Tukey Honest significant differences post-hoc test

VDAC2

voltage-dependent anion channel 2

Wald p

Wald test probability value

Notes

Acknowledgements

We are grateful to the patients and their families who participated in this study. We thank Ciaran de Chaumont and Lance Hudson for technical assistance, Ramphul Eimear, Dr. Róisín M. Dwyer and Prof. Michael J. Kerin for sharing of samples, and Dr. Triona Ni Chonghaile for critical review of the manuscript. The results published here are in part based upon data generated by the TCGA Research Network: http://cancergenome.nih.gov which we also gratefully acknowledge.

Authors’ contributions

A.U.L., F.L. and D.V. generated data. A.U.L. and A.R. performed data analysis. D.V., B.M.M., A.D.K.H. and L.S.Y. acquired clinical data and provided material. J.H.M.P. and W.M.G. conceived this study and provided funding. J.H.M.P. and L.S.Y. supervised the study. A.U.L. and J.H.M.P. wrote the manuscript. All authors read, reviewed and approved the final manuscript.

Funding

Funding support was provided by the Irish Cancer Society Collaborative Cancer Research Centre grant, BREAST-PREDICT (to J.H.M.P. and W.M.G.) and a Science Foundation Ireland Investigator Award to J.H.M.P. (13/IA/1881).

Compliance with ethical standards

Informed consents were collected following ethical approval from Beaumont Hospital Medical Research Ethics Committee.

Conflict of interest

AUL and JHMP filed a patent application at the EPO (Appl.No. EP20120166187 and EP20130728324), USPTO (Appl. No. 14/397697) and WIPO (Appl. No. PCT/EP2013/059051). The other authors declare no further conflict of interest.

Ethics approval and consent to participate

For the BREAST-PREDICT cohort, informed consents were collected following ethical approval from Beaumont Hospital Medical Research Ethics Committee.

Supplementary material

109_2018_1675_MOESM1_ESM.xlsx (270 kb)
ESM 1 (XLSX 270 kb)
109_2018_1675_MOESM2_ESM.pdf (42.9 mb)
Fig. S1 (PDF 43956 kb)
109_2018_1675_MOESM3_ESM.pdf (624 kb)
Fig. S2 (PDF 623 kb)
109_2018_1675_MOESM4_ESM.pdf (607 kb)
Fig. S3 (PDF 606 kb)

References

  1. 1.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Johnstone RW, Ruefli AA, Lowe SW (2002) Apoptosis: a link between cancer genetics and chemotherapy. Cell 108(2):153–164CrossRefPubMedGoogle Scholar
  3. 3.
    Delbridge AR, Grabow S, Strasser A, Vaux DL (2016) Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat Rev Cancer 16(2):99–109CrossRefPubMedGoogle Scholar
  4. 4.
    Lakhani SA, Masud A, Kuida K, Porter GA Jr, Booth CJ, Mehal WZ et al (2006) Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311(5762):847–851CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Strasser A, Harris AW, Jacks T, Cory S (1994) DNA damage can induce apoptosis in proliferating lymphoid cells via p53-independent mechanisms inhibitable by Bcl-2. Cell 79(2):329–339CrossRefPubMedGoogle Scholar
  6. 6.
    Hector S, Prehn JH (2009) Apoptosis signaling proteins as prognostic biomarkers in colorectal cancer: a review. Biochim Biophys Acta 1795(2):117–129PubMedGoogle Scholar
  7. 7.
    Juin P, Geneste O, Gautier F, Depil S, Campone M (2013) Decoding and unlocking the BCL-2 dependency of cancer cells. Nat Rev Cancer 13(7):455–465CrossRefPubMedGoogle Scholar
  8. 8.
    Lindner AU, Concannon CG, Boukes GJ, Cannon MD, Llambi F, Ryan D, Boland K, Kehoe J, McNamara DA, Murray F, Kay EW, Hector S, Green DR, Huber HJ, Prehn JHM (2013) Systems analysis of BCL2 protein family interactions establishes a model to predict responses to chemotherapy. Cancer Res 73(2):519–528CrossRefPubMedGoogle Scholar
  9. 9.
    Lindner AU, Salvucci M, Morgan C, Monsefi N, Resler AJ, Cremona M, Curry S, Toomey S, O'Byrne R, Bacon O, Stühler M, Flanagan L, Wilson R, Johnston PG, Salto-Tellez M, Camilleri-Broët S, McNamara DA, Kay EW, Hennessy BT, Laurent-Puig P, van Schaeybroeck S, Prehn JHM (2016) BCL-2 system analysis identifies high-risk colorectal cancer patients. Gut 66:2141–2148CrossRefPubMedGoogle Scholar
  10. 10.
    Lucantoni F, Lindner AU, O'Donovan N, Dussmann H, Prehn JHM (2018) Systems modeling accurately predicts responses to genotoxic agents and their synergism with BCL-2 inhibitors in triple negative breast cancer cells. Cell Death Discov 9(2):42CrossRefGoogle Scholar
  11. 11.
    Flanagan L, Lindner AU, de Chaumont C, Kehoe J, Fay J, Bacon O, Toomey S, Huber HJ, Hennessy BT, Kay EW, McNamara DA, Prehn JHM (2015) BCL2 protein signalling determines acute responses to neoadjuvant chemoradiotherapy in rectal cancer. J Mol Med (Berl) 93(3):315–326CrossRefGoogle Scholar
  12. 12.
    Gasparini G, Barbareschi M, Doglioni C, Palma PD, Mauri FA, Boracchi P, Bevilacqua P, Caffo O, Morelli L, Verderio P (1995) Expression of bcl-2 protein predicts efficacy of adjuvant treatments in operable node-positive breast cancer. Clin Cancer Res 1(2):189–198PubMedGoogle Scholar
  13. 13.
    Lipponen P, Pietilainen T, Kosma VM, Aaltomaa S, Eskelinen M, Syrjanen K (1995) Apoptosis suppressing protein bcl-2 is expressed in well-differentiated breast carcinomas with favourable prognosis. J Pathol 177(1):49–55CrossRefPubMedGoogle Scholar
  14. 14.
    Leek RD, Kaklamanis L, Pezzella F, Gatter KC, Harris AL (1994) bcl-2 in normal human breast and carcinoma, association with oestrogen receptor-positive, epidermal growth factor receptor-negative tumours and in situ cancer. Br J Cancer 69(1):135–139CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Knight WA, Livingston RB, Gregory EJ, McGuire WL (1977) Estrogen receptor as an independent prognostic factor for early recurrence in breast cancer. Cancer Res 37(12):4669–4671PubMedGoogle Scholar
  16. 16.
    Dong L, Wang W, Wang F, Stoner M, Reed JC, Harigai M, Samudio I, Kladde MP, Vyhlidal C, Safe S (1999) Mechanisms of transcriptional activation of bcl-2 gene expression by 17beta-estradiol in breast cancer cells. J Biol Chem 274(45):32099–32107CrossRefPubMedGoogle Scholar
  17. 17.
    Sheridan C, Delivani P, Cullen SP, Martin SJ (2008) Bax- or Bak-induced mitochondrial fission can be uncoupled from cytochrome C release. Mol Cell 31(4):570–585CrossRefPubMedGoogle Scholar
  18. 18.
    Wu X, Zhang LS, Toombs J, Kuo YC, Piazza JT, Tuladhar R, Barrett Q, Fan CW, Zhang X, Walensky LD, Kool M, Cheng SY, Brekken R, Opferman JT, Green DR, Moldoveanu T, Lum L (2017) Extra-mitochondrial prosurvival BCL-2 proteins regulate gene transcription by inhibiting the SUFU tumour suppressor. Nat Cell Biol 19(10):1226–1236CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Belanger S, Cote M, Lane D, L'Esperance S, Rancourt C, Piche A (2005) Bcl-2 decreases cell proliferation and promotes accumulation of cells in S phase without affecting the rate of apoptosis in human ovarian carcinoma cells. Gynecol Oncol 97(3):796–806CrossRefPubMedGoogle Scholar
  20. 20.
    Janumyan YM, Sansam CG, Chattopadhyay A, Cheng N, Soucie EL, Penn LZ, Andrews D, Knudson CM, Yang E (2003) Bcl-xL/Bcl-2 coordinately regulates apoptosis, cell cycle arrest and cell cycle entry. EMBO J 22(20):5459–5470CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ward E, Vareslija D, Charmsaz S, Fagan A, Browne AL, Cosgrove N et al (2018) Epigenome-wide SRC-1-mediated gene silencing represses cellular differentiation in advanced breast cancer. Clin Cancer Res  https://doi.org/10.1158/1078-0432.CCR-17-2615
  22. 22.
    Flanagan L, Meyer M, Fay J, Curry S, Bacon O, Duessmann H, John K, Boland KC, McNamara DA, Kay EW, Bantel H, Schulze-Bergkamen H, Prehn JHM (2016) Low levels of caspase-3 predict favourable response to 5FU-based chemotherapy in advanced colorectal cancer: caspase-3 inhibition as a therapeutic approach. Cell Death Dis 7:e2087.  https://doi.org/10.1038/cddis.2016.7 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27(8):1160–1167CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gendoo DM, Ratanasirigulchai N, Schroder MS, Pare L, Parker JS, Prat A et al (2016) Genefu: an R/Bioconductor package for computation of gene expression-based signatures in breast cancer. Bioinformatics 32(7):1097–1099CrossRefPubMedGoogle Scholar
  25. 25.
    Nielsen TO, Parker JS, Leung S, Voduc D, Ebbert M, Vickery T et al (2010) A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin Cancer Res 16(21):5222–5232CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Murphy AC, Weyhenmeyer B, Schmid J, Kilbride SM, Rehm M, Huber HJ, Senft C, Weissenberger J, Seifert V, Dunst M, Mittelbronn M, Kögel D, Prehn JHM, Murphy BM (2013) Activation of executioner caspases is a predictor of progression-free survival in glioblastoma patients: a systems medicine approach. Cell Death Dis 4:e629.  https://doi.org/10.1038/cddis.2013.157 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Huang Q, Li F, Liu X, Li W, Shi W, Liu FF, O'Sullivan B, He Z, Peng Y, Tan AC, Zhou L, Shen J, Han G, Wang XJ, Thorburn J, Thorburn A, Jimeno A, Raben D, Bedford JS, Li CY (2011) Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med 17(7):860–866CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Fernandes-Alnemri T, Takahashi A, Armstrong R, Krebs J, Fritz L, Tomaselli KJ, Wang L, Yu Z, Croce CM, Salveson G (1995) Mch3, a novel human apoptotic cysteine protease highly related to CPP32. Cancer Res 55(24):6045–6052PubMedGoogle Scholar
  29. 29.
    Lippke JA, Gu Y, Sarnecki C, Caron PR, Su MS (1996) Identification and characterization of CPP32/Mch2 homolog 1, a novel cysteine protease similar to CPP32. J Biol Chem 271(4):1825–1828CrossRefPubMedGoogle Scholar
  30. 30.
    Boland K, Flanagan L, Prehn JH (2013) Paracrine control of tissue regeneration and cell proliferation by Caspase-3. Cell Death Dis 4:e725.  https://doi.org/10.1038/cddis.2013.250 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Dawson SJ, Makretsov N, Blows FM, Driver KE, Provenzano E, Le Quesne J et al (2010) BCL2 in breast cancer: a favourable prognostic marker across molecular subtypes and independent of adjuvant therapy received. Br J Cancer 103(5):668–675CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lucantoni F, Dussmann H, Llorente-Folch I, Prehn JHM (2018) BCL2 and BCL(X)L selective inhibitors decrease mitochondrial ATP production in breast cancer cells and are synthetically lethal when combined with 2-deoxy-D-glucose. Oncotarget 9(40):26046–26063CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ke H, Parron VI, Reece J, Zhang JY, Akiyama SK, French JE (2010) BCL2 inhibits cell adhesion, spreading, and motility by enhancing actin polymerization. Cell Res 20(4):458–469CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wan G, Pehlke C, Pepermans R, Cannon JL, Lidke D, Rajput A (2015) The H1047R point mutation in p110 alpha changes the morphology of human colon HCT116 cancer cells. Cell Death Discov 1:15044CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yamaguchi H, Condeelis J (2007) Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta 1773(5):642–652CrossRefPubMedGoogle Scholar
  36. 36.
    Makris A, Powles TJ, Dowsett M, Osborne CK, Trott PA, Fernando IN, Ashley SE, Ormerod MG, Titley JC, Gregory RK, Allred DC (1997) Prediction of response to neoadjuvant chemoendocrine therapy in primary breast carcinomas. Clin Cancer Res 3(4):593–600PubMedGoogle Scholar
  37. 37.
    Chang J, Powles TJ, Allred DC, Ashley SE, Clark GM, Makris A, Assersohn L, Gregory RK, Osborne CK, Dowsett M (1999) Biologic markers as predictors of clinical outcome from systemic therapy for primary operable breast cancer. J Clin Oncol 17(10):3058–3063CrossRefPubMedGoogle Scholar
  38. 38.
    Chang J, Ormerod M, Powles TJ, Allred DC, Ashley SE, Dowsett M (2000) Apoptosis and proliferation as predictors of chemotherapy response in patients with breast carcinoma. Cancer 89(11):2145–2152CrossRefPubMedGoogle Scholar
  39. 39.
    Krajewski S, Tanaka S, Takayama S, Schibler MJ, Fenton W, Reed JC (1993) Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res 53(19):4701–4714PubMedGoogle Scholar
  40. 40.
    Elledge RM, Green S, Howes L, Clark GM, Berardo M, Allred DC, Pugh R, Ciocca D, Ravdin P, O'Sullivan J, Rivkin S, Martino S, Osborne CK (1997) bcl-2, p53, and response to tamoxifen in estrogen receptor-positive metastatic breast cancer: a Southwest Oncology Group study. J Clin Oncol. 15(5):1916–1922CrossRefPubMedGoogle Scholar
  41. 41.
    Hilsenbeck SG, Ravdin PM, de Moor CA, Chamness GC, Osborne CK, Clark GM (1998) Time-dependence of hazard ratios for prognostic factors in primary breast cancer. Breast Cancer Res Treat 52(1–3):227–237CrossRefPubMedGoogle Scholar
  42. 42.
    Gyrd-Hansen M, Meier P (2010) IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat Rev Cancer 10(8):561–574CrossRefPubMedGoogle Scholar
  43. 43.
    Ku B, Liang C, Jung JU, Oh BH (2011) Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX. Cell Res 21(4):627–641CrossRefPubMedGoogle Scholar
  44. 44.
    Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG, Colman PM, Day CL, Adams JM, Huang DCS (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17(3):393–403CrossRefPubMedGoogle Scholar
  45. 45.
    Llambi F, Moldoveanu T, Tait SW, Bouchier-Hayes L, Temirov J, McCormick LL et al (2011) A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol Cell 44(4):517–531CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Vaillant F, Merino D, Lee L, Breslin K, Pal B, Ritchie ME, Smyth GK, Christie M, Phillipson LJ, Burns CJ, Mann GB, Visvader JE, Lindeman GJ (2013) Targeting BCL-2 with the BH3 mimetic ABT-199 in estrogen receptor-positive breast cancer. Cancer Cell 24(1):120–129CrossRefPubMedGoogle Scholar
  47. 47.
    Merino D, Khaw SL, Glaser SP, Anderson DJ, Belmont LD, Wong C, Yue P, Robati M, Phipson B, Fairlie WD, Lee EF, Campbell KJ, Vandenberg CJ, Cory S, Roberts AW, Ludlam MJC, Huang DCS, Bouillet P (2012) Bcl-2, Bcl-x(L), and Bcl-w are not equivalent targets of ABT-737 and navitoclax (ABT-263) in lymphoid and leukemic cells. Blood 119(24):5807–5816CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI, Adams JM, Huang DC (2005) Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 19(11):1294–1305CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor G, Thompson CB, Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292(5517):727–730CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Andreas U. Lindner
    • 1
    • 2
  • Federico Lucantoni
    • 1
    • 2
  • Damir Varešlija
    • 3
  • Alexa Resler
    • 1
    • 2
  • Brona M. Murphy
    • 1
    • 2
  • William M. Gallagher
    • 4
  • Arnold D. K. Hill
    • 3
  • Leonie S. Young
    • 3
  • Jochen H. M. Prehn
    • 1
    • 2
  1. 1.RCSI Centre for Systems MedicineRoyal College of Surgeons in IrelandDublin 2Ireland
  2. 2.Department of Physiology and Medical PhysicsRoyal College of Surgeons in IrelandDublin 2Ireland
  3. 3.Department of SurgeryRoyal College of Surgeons in IrelandDublin 2Ireland
  4. 4.Cancer Biology and Therapeutics Laboratory, School of Biomolecular and Biomedical Science, Conway InstituteUniversity College DublinDublin 4Ireland

Personalised recommendations