Journal of Molecular Medicine

, Volume 96, Issue 8, pp 845–856 | Cite as

Plasma microRNAs as biomarkers for Lamin A/C-related dilated cardiomyopathy

  • Rocío ToroEmail author
  • Sara Blasco-Turrión
  • Francisco José Morales-Ponce
  • Pablo Gonzalez
  • Pablo Martínez-Camblor
  • Amador López-Granados
  • Ramon Brugada
  • Oscar Campuzano
  • Alexandra Pérez-Serra
  • Felix Rosa Longobardo
  • Alipio Mangas
  • Vicenta Llorente-Cortes
  • David de Gonzalo-CalvoEmail author
Original Article


Lamin A/C gene (LMNA)-related familial dilated cardiomyopathy (fDCM) is an aggressive heart disease that often leads to transplantation and sudden death. The aim of our study was to evaluate the circulating microRNA (miRNA) profiles of patients with LMNA pathogenic mutations. The study population (N = 75) included (i) patients with pathogenic LMNA mutations responsible for fDCM (LMNAMUT), (ii) age- and sex-matched LMNA wild-type controls (LMNAWT control), and (iii) LMNA wild-type idiopathic DCM (iDCM) patients (LMNAWT iDCM). Detailed clinical information was obtained from each participant. A panel of 179 plasma miRNAs was evaluated using RT-qPCR. An initial screening study was performed in LMNAMUT carriers and age-matched LMNAWT controls (N = 16). Forty-four miRNAs were specifically deregulated in LMNAMUT carriers. Ten miRNA candidates were selected for subsequent validation after coexpression analyses and filtered for expression levels and statistical significance. Among the candidates, let-7a-5p, miR-142-3p, miR-145-5p and miR-454-3p levels were significantly increased in LMNAMUT carriers compared to LMNAWT controls and iDCM patients (P < 0.050). These circulating miRNAs, and their combination, were also associated with the presence of pathogenic mutations in regression and ROC analyses. This signature also discriminates between LMNAWT healthy subjects and LMNAMUT carriers who are phenotypically negative for DCM and between LMNAWT iDCM and LMNA-related DCM patients. Correlation and functional enrichment analyses supported their association with the pathophysiology of the disease. We demonstrated for the first time that a specific miRNA signature could serve as a novel non-invasive tool to assist in the diagnosis of patients with fDCM caused by LMNA pathogenic mutations.

Key messages

  • Let-7a-5p, miR-142-3p, miR-145-5p and miR-454-3p are differentially expressed in LMNAMUT carriers.

  • A composite score based on these miRNAs is a biomarker of mutations in the LMNA gene.

  • This miRNA signature can be associated with the pathophysiology of familial DCM.

  • The circulating miRNA profile can assist in the diagnosis of familial DCM.


Dilated cardiomyopathy Lamin A/C (LMNACirculating microRNAs Biomarkers 


Funding information

This work was supported by the Fundación Pública Andaluza Progreso y Salud para la Financiación de la I+i Biomédica y en Ciencias de las Salud en Andalucia (PI-0011/2014) and a grant in the framework of the Integrated Territorial Initiative (ITI)2014-2020 for the province of Cádiz by the Ministry of Health and the European Regional Developement Fund (ERDF) PI0048-2017 (project co-finantiated 80% by funds from the ERDF operational program of Andalusia 2014-2020) (ITI 0048-2017). This work was also supported by FIS PI14/01729 from the Instituto Salud Carlos III, co-financed by the European Fund for Regional Development (E.F.R.D.), Fundació Marató TV3 (201521 10), and Fundació “La Caixa.” CIBER Cardiovascular (CB16/11/00403) is an Instituto de Salud Carlos III Project. DdG-C was a recipient of a Juan de la Cierva-Incorporación grant from the Ministerio de Economía y Competitividad (IJCI-2016-29393).

Compliance with ethical standards

Our ethics committee (Comité de Ética de la Investigación de Cádiz) approved the study protocol, following the Helsinki II declaration. The genetic study was approved by the Ethics Committee of the Hospital Josep Trueta (Girona, Spain), also following the Helsinki II declaration. All subjects gave their written informed consent before participating in the study.

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

109_2018_1666_MOESM1_ESM.docx (42 kb)
ESM 1 (DOCX 41.7 kb)
109_2018_1666_MOESM2_ESM.docx (39 kb)
ESM 2 (DOCX 39.0 kb)


  1. 1.
    Perez-Serra A, Toro R, Sarquella-Brugada G, de Gonzalo-Calvo D, Cesar S, Carro E, Llorente-Cortes V, Iglesias A, Brugada J, Brugada R et al (2016) Genetic basis of dilated cardiomyopathy. Int J Cardiol 224:461–472CrossRefPubMedGoogle Scholar
  2. 2.
    Cuenca S, Ruiz-Cano MJ, Gimeno-Blanes JR, Jurado A, Salas C, Gomez-Diaz I, Padron-Barthe L, Grillo JJ, Vilches C, Segovia J, Pascual-Figal D, Lara-Pezzi E, Monserrat L, Alonso-Pulpon L, Garcia-Pavia P, Inherited Cardiac Diseases Program of the Spanish Cardiovascular Research Network (Red Investigación Cardiovascular) (2016) Genetic basis of familial dilated cardiomyopathy patients undergoing heart transplantation. J Heart Lung Transplant 35:625–635CrossRefPubMedGoogle Scholar
  3. 3.
    Pasotti M, Klersy C, Pilotto A, Marziliano N, Rapezzi C, Serio A, Mannarino S, Gambarin F, Favalli V, Grasso M, Agozzino M, Campana C, Gavazzi A, Febo O, Marini M, Landolina M, Mortara A, Piccolo G, Viganò M, Tavazzi L, Arbustini E (2008) Long-term outcome and risk stratification in dilated cardiolaminopathies. J Am Coll Cardiol 52:1250–1260CrossRefPubMedGoogle Scholar
  4. 4.
    van Rijsingen IA, Nannenberg EA, Arbustini E, Elliott PM, Mogensen J, Hermans-van Ast JF, van der Kooi AJ, van Tintelen JP, van den Berg MP, Grasso M et al (2013) Gender-specific differences in major cardiac events and mortality in Lamin A/C mutation carriers. Eur J Heart Fail 15:376–384CrossRefPubMedGoogle Scholar
  5. 5.
    Meune C, Van Berlo JH, Anselme F, Bonne G, Pinto YM, Duboc D (2006) Primary prevention of sudden death in patients with Lamin A/C gene mutations. N Engl J Med 354:209–210CrossRefPubMedGoogle Scholar
  6. 6.
    Wang X, Zabell A, Koh W, Tang WH (2017) Lamin A/C cardiomyopathies: current understanding and novel treatment strategies. Curr Treat Options Cardiovasc Med 19:21CrossRefPubMedGoogle Scholar
  7. 7.
    de Gonzalo-Calvo D, Quezada M, Campuzano O, Perez-Serra A, Broncano J, Ayala R, Ramos M, Llorente-Cortes V, Blasco-Turrion S, Morales FJ et al (2017) Familial dilated cardiomyopathy: a multidisciplinary entity, from basic screening to novel circulating biomarkers. Int J Cardiol 228:870–880CrossRefPubMedGoogle Scholar
  8. 8.
    Devaux Y (2017) Transcriptome of blood cells as a reservoir of cardiovascular biomarkers. Biochim Biophys Acta 1864:209–216CrossRefPubMedGoogle Scholar
  9. 9.
    Maass PG, Glazar P, Memczak S, Dittmar G, Hollfinger I, Schreyer L, Sauer AV, Toka O, Aiuti A, Luft FC et al (2017) A map of human circular RNAs in clinically relevant tissues. J Mol Med (Berl) 95:1179–1189CrossRefGoogle Scholar
  10. 10.
    Mayr M, Zampetaki A, Willeit P, Willeit J, Kiechl S (2013) MicroRNAs within the continuum of postgenomics biomarker discovery. Arterioscler Thromb Vasc Biol 33:206–214CrossRefPubMedGoogle Scholar
  11. 11.
    de Gonzalo-Calvo D, Davalos A, Montero A, Garcia-Gonzalez A, Tyshkovska I, Gonzalez-Medina A, Soares SM, Martinez-Camblor P, Casas-Agustench P, Rabadan M et al (2015) Circulating inflammatory miRNA signature in response to different doses of aerobic exercise. J Appl Physiol (1985) 119:124–134CrossRefGoogle Scholar
  12. 12.
    de Gonzalo-Calvo D, Kenneweg F, Bang C, Toro R, van der Meer RW, Rijzewijk LJ, Smit JW, Lamb HJ, Llorente-Cortes V, Thum T (2016) Circulating long noncoding RNAs in personalized medicine: response to pioglitazone therapy in type 2 diabetes. J Am Coll Cardiol 68:2914–2916CrossRefPubMedGoogle Scholar
  13. 13.
    Poller W, Dimmeler S, Heymans S, Zeller T, Haas J, Karakas M, Leistner DM, Jakob P, Nakagawa S, Blankenberg S, Engelhardt S, Thum T, Weber C, Meder B, Hajjar R, Landmesser U (2017) Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J.
  14. 14.
    Bayes-Genis A, Lanfear DE, de Ronde MWJ, Lupon J, Leenders JJ, Liu Z, Zuithoff NPA, Eijkemans MJC, Zamora E, De Antonio M et al (2018) Prognostic value of circulating microRNAs on heart failure-related morbidity and mortality in two large diverse cohorts of general heart failure patients. Eur J Heart Fail 20:67–75CrossRefPubMedGoogle Scholar
  15. 15.
    Viereck J, Thum T (2017) Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circ Res 120:381–399CrossRefPubMedGoogle Scholar
  16. 16.
    de Gonzalo-Calvo D, van der Meer RW, Rijzewijk LJ, Smit JW, Revuelta-Lopez E, Nasarre L, Escola-Gil JC, Lamb HJ, Llorente-Cortes V (2017) Serum microRNA-1 and microRNA-133a levels reflect myocardial steatosis in uncomplicated type 2 diabetes. Sci Rep 7:47CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kuwabara Y, Ono K, Horie T, Nishi H, Nagao K, Kinoshita M, Watanabe S, Baba O, Kojima Y, Shizuta S, Imai M, Tamura T, Kita T, Kimura T (2011) Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet 4:446–454CrossRefPubMedGoogle Scholar
  18. 18.
    de Gonzalo-Calvo D, Vea A, Bär C, Fiedler J, Couch LS, Brotons C, Llorente-Cortes V, Thum T (2018) Circulating non-coding RNAs in biomarker-guided cardiovascular therapy: a novel tool for personalized medicine? Eur Heart J.
  19. 19.
    Mestdagh P, Hartmann N, Baeriswyl L, Andreasen D, Bernard N, Chen C, Cheo D, D'Andrade P, DeMayo M, Dennis L, Derveaux S, Feng Y, Fulmer-Smentek S, Gerstmayer B, Gouffon J, Grimley C, Lader E, Lee KY, Luo S, Mouritzen P, Narayanan A, Patel S, Peiffer S, Rüberg S, Schroth G, Schuster D, Shaffer JM, Shelton EJ, Silveria S, Ulmanella U, Veeramachaneni V, Staedtler F, Peters T, Guettouche T, Wong L, Vandesompele J (2014) Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat Methods 11:809–815CrossRefPubMedGoogle Scholar
  20. 20.
    Blondal T, Jensby Nielsen S, Baker A, Andreasen D, Mouritzen P, Wrang Teilum M, Dahlsveen IK (2013) Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods 59:S1–S6CrossRefPubMedGoogle Scholar
  21. 21.
    de Gonzalo-Calvo D, Cenarro A, Garlaschelli K, Pellegatta F, Vilades D, Nasarre L, Camino-Lopez S, Crespo J, Carreras F, Leta R, Catapano AL, Norata GD, Civeira F, Llorente-Cortes V (2017) Translating the microRNA signature of microvesicles derived from human coronary artery smooth muscle cells in patients with familial hypercholesterolemia and coronary artery disease. J Mol Cell Cardiol 106:55–67CrossRefPubMedGoogle Scholar
  22. 22.
    Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T, Dalamagas T, Hatzigeorgiou AG (2015) DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res 43:W460–W466CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Goren Y, Kushnir M, Zafrir B, Tabak S, Lewis BS, Amir O (2012) Serum levels of microRNAs in patients with heart failure. Eur J Heart Fail 14:147–154CrossRefPubMedGoogle Scholar
  24. 24.
    Yu M, Liang W, Xie Y, Long Q, Cheng X, Liao YH, Yuan J (2016) Circulating miR-185 might be a novel biomarker for clinical outcome in patients with dilated cardiomyopathy. Sci Rep 6:33580CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Priori SG, Blomstrom-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, Elliott PM, Fitzsimons D, Hatala R, Hindricks G et al (2015) 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J 36:2793–2867CrossRefPubMedGoogle Scholar
  26. 26.
    Japp AG, Gulati A, Cook SA, Cowie MR, Prasad SK (2016) The diagnosis and evaluation of dilated cardiomyopathy. J Am Coll Cardiol 67:2996–3010CrossRefPubMedGoogle Scholar
  27. 27.
    Van Linthout S, Tschope C (2017) Lost in markers? Time for phenomics and phenomapping in dilated cardiomyopathy. Eur J Heart Fail 19:499–501CrossRefPubMedGoogle Scholar
  28. 28.
    Pinto YM, Elliott PM, Arbustini E, Adler Y, Anastasakis A, Bohm M, Duboc D, Gimeno J, de Groote P, Imazio M et al (2016) Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur Heart J 37:1850–1858CrossRefPubMedGoogle Scholar
  29. 29.
    Jaguszewski M, Osipova J, Ghadri JR, Napp LC, Widera C, Franke J, Fijalkowski M, Nowak R, Fijalkowska M, Volkmann I, Katus HA, Wollert KC, Bauersachs J, Erne P, Luscher TF, Thum T, Templin C (2014) A signature of circulating microRNAs differentiates takotsubo cardiomyopathy from acute myocardial infarction. Eur Heart J 35:999–1006CrossRefPubMedGoogle Scholar
  30. 30.
    Sommariva E, D'Alessandra Y, Farina FM, Casella M, Cattaneo F, Catto V, Chiesa M, Stadiotti I, Brambilla S, Dello Russo A et al (2017) MiR-320a as a potential novel circulating biomarker of arrhythmogenic cardiomyopathy. Sci Rep 7:4802CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Tijsen AJ, Creemers EE, Moerland PD, de Windt LJ, van der Wal AC, Kok WE, Pinto YM (2010) MiR423-5p as a circulating biomarker for heart failure. Circ Res 106:1035–1039CrossRefPubMedGoogle Scholar
  32. 32.
    Enes Coskun M, Kervancioglu M, Oztuzcu S, Yilmaz Coskun F, Ergun S, Baspinar O, Kilinc M, Temel L, Coskun MY (2016) Plasma microRNA profiling of children with idiopathic dilated cardiomyopathy. Biomarkers 21:56–61CrossRefPubMedGoogle Scholar
  33. 33.
    Fan KL, Zhang HF, Shen J, Zhang Q, Li XL (2013) Circulating microRNAs levels in Chinese heart failure patients caused by dilated cardiomyopathy. Indian Heart J 65:12–16CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Miyamoto SD, Karimpour-Fard A, Peterson V, Auerbach SR, Stenmark KR, Stauffer BL, Sucharov CC (2015) Circulating microRNA as a biomarker for recovery in pediatric dilated cardiomyopathy. J Heart Lung Transplant 34:724–733CrossRefPubMedGoogle Scholar
  35. 35.
    Haas J, Mester S, Lai A, Frese KS, Sedaghat-Hamedani F, Kayvanpour E, Rausch T, Nietsch R, Boeckel JN, Carstensen A, Völkers M, Dietrich C, Pils D, Amr A, Holzer DB, Martins Bordalo D, Oehler D, Weis T, Mereles D, Buss S, Riechert E, Wirsz E, Wuerstle M, Korbel JO, Keller A, Katus HA, Posch AE, Meder B (2018) Genomic structural variations lead to dysregulation of important coding and non-coding RNA species in dilated cardiomyopathy. EMBO Mol Med 10:107–120CrossRefPubMedGoogle Scholar
  36. 36.
    Chen JF, Murchison EP, Tang R, Callis TE, Tatsuguchi M, Deng Z, Rojas M, Hammond SM, Schneider MD, Selzman CH, Meissner G, Patterson C, Hannon GJ, Wang DZ (2008) Targeted deletion of dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci U S A 105:2111–2116CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Li R, Yan G, Li Q, Sun H, Hu Y, Sun J, Xu B (2012) MicroRNA-145 protects cardiomyocytes against hydrogen peroxide (H(2)O(2))-induced apoptosis through targeting the mitochondria apoptotic pathway. PLoS One 7:e44907CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Nair N, Kumar S, Gongora E, Gupta S (2013) Circulating miRNA as novel markers for diastolic dysfunction. Mol Cell Biochem 376:33–40CrossRefPubMedGoogle Scholar
  39. 39.
    Voellenkle C, van Rooij J, Cappuzzello C, Greco S, Arcelli D, Di Vito L, Melillo G, Rigolini R, Costa E, Crea F et al (2010) MicroRNA signatures in peripheral blood mononuclear cells of chronic heart failure patients. Physiol Genomics 42:420–426CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rocío Toro
    • 1
    Email author
  • Sara Blasco-Turrión
    • 2
  • Francisco José Morales-Ponce
    • 2
  • Pablo Gonzalez
    • 2
  • Pablo Martínez-Camblor
    • 3
    • 4
  • Amador López-Granados
    • 5
  • Ramon Brugada
    • 6
    • 7
    • 8
    • 9
  • Oscar Campuzano
    • 6
    • 7
    • 8
  • Alexandra Pérez-Serra
    • 6
    • 8
  • Felix Rosa Longobardo
    • 1
  • Alipio Mangas
    • 1
    • 10
  • Vicenta Llorente-Cortes
    • 8
    • 11
    • 12
  • David de Gonzalo-Calvo
    • 8
    • 11
    • 12
    Email author
  1. 1.Medicine Department, School of Medicine, Institute of Research and Innovation in Biomedical Sciences (INiBICA)University of CádizCádizSpain
  2. 2.Cardiology Department, Institute of Research and Innovation in Biomedical Sciences (INiBICA)Puerto Real University HospitalCádizSpain
  3. 3.Geisel School of MedicineDartmouth CollegeHanoverUSA
  4. 4.Universidad Autónoma de ChileSantiagoChile
  5. 5.Cardiology DepartmentReina Sofía University HospitalCórdobaSpain
  6. 6.Cardiovascular Genetics CenterUniversity of Girona-IDIBGIGironaSpain
  7. 7.Medical Science Department, School of MedicineUniversity of GironaGironaSpain
  8. 8.CIBER CardiovascularInstitute of Health Carlos IIIMadridSpain
  9. 9.Cardiology Service, Hospital Josep TruetaUniversity of GironaGironaSpain
  10. 10.Internal Medicine Department, Institute of Research and Innovation in Biomedical Sciences (INiBICA)Puerta del Mar University HospitalCádizSpain
  11. 11.Biomedical Research Institute Sant Pau (IIB Sant Pau)BarcelonaSpain
  12. 12.Institute of Biomedical Research of Barcelona (IIBB)Spanish National Research Council (CSIC)BarcelonaSpain

Personalised recommendations