Journal of Molecular Medicine

, Volume 96, Issue 8, pp 725–739 | Cite as

The multisystemic functions of FOXD1 in development and disease

  • Paula Quintero-Ronderos
  • Paul LaissueEmail author


Transcription factors (TFs) participate in a wide range of cellular processes due to their inherent function as essential regulatory proteins. Their dysfunction has been linked to numerous human diseases. The forkhead box (FOX) family of TFs belongs to the “winged helix” superfamily, consisting of proteins sharing a related winged helix-turn-helix DNA-binding motif. FOX genes have been extensively present during vertebrates and invertebrates’ evolution, participating in numerous molecular cascades and biological functions, such as embryonic development and organogenesis, cell cycle regulation, metabolism control, stem cell niche maintenance, signal transduction, and many others. FOXD1, a forkhead TF, has been related to different key biological processes such as kidney and retina development and embryo implantation. FOXD1 dysfunction has been linked to different pathologies, thereby constituting a diagnostic biomarker and a promising target for future therapies. This paper aims to present, for the first time, a comprehensive review of FOXD1’s role in mouse development and human disease. Molecular, structural, and functional aspects of FOXD1 are presented in light of physiological and pathogenic conditions, including its role in human disease aetiology, such as cancer and recurrent pregnancy loss. Taken together, the information given here should enable a better understanding of FOXD1 function for basic science researchers and clinicians.


FOXD1 Retina development Kidney morphogenesis Recurrent pregnancy loss Transcription factor Cancer aetiology 


Funding information

The present study was supported by the Universidad del Rosario (Grant CS/Genetics/ABN062-2018). Laissue’s lab is supported by the Universidad del Rosario.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

109_2018_1665_MOESM1_ESM.pdf (264 kb)
Supplementary Fig. S1. FOXD1 interspecific alignment (Homo sapiens and Mus musculus). An alignment with the nucleotide and amino acid sequences from human and mouse are shown. FOXD1 protein consists of 465 and 456 amino acids in mouse and human, respectively. The bold letters within the purple box indicate the conserved DBD sequence between both species. The yellow and blue boxes show the poly-Ala and poly-Pro stretches, respectively, located within the COOH-terminal domain. (PDF 263 kb)


  1. 1.
    Lee TI, Young RA (2013) Transcriptional regulation and its misregulation in disease. Cell 152:1237–1251PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Fuda NJ, Ardehali MB, Lis JT (2009) Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 461:186–192PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Zhou Q, Li T, Price DH (2012) RNA polymerase II elongation control. Annu Rev Biochem 81:119–143PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Siggers T, Duyzend MH, Reddy J, Khan S, Bulyk ML (2011) Non-DNA-binding cofactors enhance DNA-binding specificity of a transcriptional regulatory complex. Mol Syst Biol 7:555PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Slattery M, Riley T, Liu P, Abe N, Gomez-Alcala P, Dror I, Zhou T, Rohs R, Honig B, Bussemaker HJ, Mann RS (2011) Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins. Cell 147:1270–1282PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Spitz F, Furlong EEM (2012) Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13:613–626PubMedCrossRefGoogle Scholar
  7. 7.
    Smith NC, Matthews JM (2016) Mechanisms of DNA-binding specificity and functional gene regulation by transcription factors. Curr Opin Struct Biol 38:68–74PubMedCrossRefGoogle Scholar
  8. 8.
    Schleif RF (2013) Modulation of DNA binding by gene-specific transcription factors. Biochemistry 52:6755–6765PubMedCrossRefGoogle Scholar
  9. 9.
    Adachi K, Schöler HR (2012) Directing reprogramming to pluripotency by transcription factors. Curr Opin Genet Dev 22:416–422PubMedCrossRefGoogle Scholar
  10. 10.
    Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, Chen X, Taipale J, Hughes TR, Weirauch MT (2018) The human transcription factors. Cell 172:650–665PubMedCrossRefGoogle Scholar
  11. 11.
    Osório J (2016) Gene regulation: landscape and mechanisms of transcription factor cooperativity. Nat Rev Genet 17:5PubMedCrossRefGoogle Scholar
  12. 12.
    Yusuf D, Butland SL, Swanson MI, Bolotin E, Ticoll A, Cheung WA, Cindy Zhang X, Dickman CTD, Fulton DL, Lim JS, Schnabl JM, Ramos OHP, Vasseur-Cognet M, de Leeuw CN, Simpson EM, Ryffel GU, Lam EWF, Kist R, Wilson MSC, Marco-Ferreres R, Brosens JJ, Beccari LL, Bovolenta P, Benayoun BA, Monteiro LJ, Schwenen HDC, Grontved L, Wederell E, Mandrup S, Veitia RA, Chakravarthy H, Hoodless PA, Mancarelli MM, Torbett BE, Banham AH, Reddy SP, Cullum RL, Liedtke M, Tschan MP, Vaz M, Rizzino A, Zannini M, Frietze S, Farnham PJ, Eijkelenboom A, Brown PJ, Laperrière D, Leprince D, de Cristofaro T, Prince KL, Putker M, del Peso L, Camenisch G, Wenger RH, Mikula M, Rozendaal M, Mader S, Ostrowski J, Rhodes SJ, van Rechem C, Boulay G, Olechnowicz SWZ, Breslin MB, Lan MS, Nanan KK, Wegner M, Hou J, Mullen RD, Colvin SC, Noy P, Webb CF, Witek ME, Ferrell S, Daniel JM, Park J, Waldman SA, Peet DJ, Taggart M, Jayaraman PS, Karrich JJ, Blom B, Vesuna F, O'Geen H, Sun Y, Gronostajski RM, Woodcroft MW, Hough MR, Chen E, Europe-Finner GN, Karolczak-Bayatti M, Bailey J, Hankinson O, Raman V, LeBrun DP, Biswal S, Harvey CJ, DeBruyne JP, Hogenesch JB, Hevner RF, Héligon C, Luo XM, Blank M, Millen K, Sharlin DS, Forrest D, Dahlman-Wright K, Zhao C, Mishima Y, Sinha S, Chakrabarti R, Portales-Casamar E, Sladek FM, Bradley PH, Wasserman WW (2012) The transcription factor encyclopedia. Genome Biol 13:R24PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Deplancke B, Alpern D, Gardeux V (2016) The genetics of transcription factor DNA binding variation. Cell 166:538–554PubMedCrossRefGoogle Scholar
  14. 14.
    Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM (2009) A census of human transcription factors: function, expression and evolution. Nat Rev Genet 10:252–263PubMedCrossRefGoogle Scholar
  15. 15.
    Fulton DL, Sundararajan S, Badis G, Hughes TR, Wasserman WW, Roach JC, Sladek R (2009) TFCat: the curated catalog of mouse and human transcription factors. Genome Biol 10:R29PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Wingender E, Schoeps T, Haubrock M, Dönitz J (2015) TFClass: a classification of human transcription factors and their rodent orthologs. Nucleic Acids Res 43:D97–D102PubMedCrossRefGoogle Scholar
  17. 17.
    Ehsani R, Bahrami S, Drabløs F (2016) Feature-based classification of human transcription factors into hypothetical sub-classes related to regulatory function. BMC Bioinformatics 17:459PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Hannenhalli S, Kaestner KH (2009) The evolution of Fox genes and their role in development and disease. Nat Rev Genet 10:233–240PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Golson ML, Kaestner KH (2016) Fox transcription factors: from development to disease. Development 143:4558–4570PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Laissue P, Vinci G, Veitia RA, Fellous M (2008) Recent advances in the study of genes involved in non-syndromic premature ovarian failure. Mol Cell Endocrinol 282:101–111PubMedCrossRefGoogle Scholar
  21. 21.
    Martins R, Lithgow GJ, Link W (2016) Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging Cell 15:196–207PubMedCrossRefGoogle Scholar
  22. 22.
    Benayoun BA, Caburet S, Veitia RA (2011) Forkhead transcription factors: key players in health and disease. Trends Genet 27:224–232PubMedCrossRefGoogle Scholar
  23. 23.
    Le Fevre AK, Taylor S, Malek NH et al (2013) FOXP1 mutations cause intellectual disability and a recognizable phenotype. Am J Med Genet A 161:3166–3175CrossRefGoogle Scholar
  24. 24.
    Webb AE, Brunet A (2014) FOXO transcription factors: key regulators of cellular quality control. Trends Biochem Sci 39:159–169PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Coomans de Brachène A, Demoulin J-B (2016) FOXO transcription factors in cancer development and therapy. Cell Mol Life Sci 73:1159–1172PubMedCrossRefGoogle Scholar
  26. 26.
    Maiese K (2016) Forkhead transcription factors: new considerations for Alzheimer’s disease and dementia. J Transl Sci 2:241–247PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Siper PM, De Rubeis S, Trelles MDP et al (2017) Prospective investigation of FOXP1 syndrome. Mol Autism 8:57PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Elzaiat M, Todeschini A-L, Caburet S, Veitia RA (2017) The genetic make-up of ovarian development and function: the focus on the transcription factor FOXL2. Clin Genet 91:173–182PubMedCrossRefGoogle Scholar
  29. 29.
    Link W, Fernandez-Marcos PJ (2017) FOXO transcription factors at the interface of metabolism and cancer. Int J Cancer 141:2379–2391PubMedCrossRefGoogle Scholar
  30. 30.
    Weigel D, Jürgens G, Küttner F, Seifert E, Jäckle H (1989) The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell 57:645–658PubMedCrossRefGoogle Scholar
  31. 31.
    Lai E, Prezioso VR, Smith E, Litvin O, Costa RH, Darnell JE (1990) HNF-3A, a hepatocyte-enriched transcription factor of novel structure is regulated transcriptionally. Genes Dev 4:1427–1436PubMedCrossRefGoogle Scholar
  32. 32.
    Clark KL, Halay ED, Lai E, Burley SK (1993) Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364:412–420PubMedCrossRefGoogle Scholar
  33. 33.
    Katoh M, Katoh M (2004) Human FOX gene family (review). Int J Oncol 25:1495–1500PubMedGoogle Scholar
  34. 34.
    Shimeld SM, Degnan B, Luke GN (2010) Evolutionary genomics of the Fox genes: origin of gene families and the ancestry of gene clusters. Genomics 95:256–260PubMedCrossRefGoogle Scholar
  35. 35.
    Georges AB, Benayoun BA, Caburet S, Veitia RA (2010) Generic binding sites, generic DNA-binding domains: where does specific promoter recognition come from? FASEB J 24:346–356PubMedCrossRefGoogle Scholar
  36. 36.
    Laissue P, Lakhal B, Vatin M, Batista F, Burgio G, Mercier E, Santos ED, Buffat C, Sierra-Diaz DC, Renault G, Montagutelli X, Salmon J, Monget P, Veitia RA, Méhats C, Fellous M, Gris JC, Cocquet J, Vaiman D (2016) Association of FOXD1 variants with adverse pregnancy outcomes in mice and humans. Open Biol 6:160109PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Everson JL, Fink DM, Yoon JW, Leslie EJ, Kietzman HW, Ansen-Wilson LJ, Chung HM, Walterhouse DO, Marazita ML, Lipinski RJ (2017) Sonic hedgehog regulation of Foxf2 promotes cranial neural crest mesenchyme proliferation and is disrupted in cleft lip morphogenesis. Development 144:2082–2091PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Leslie EJ, Liu H, Carlson JC, Shaffer JR, Feingold E, Wehby G, Laurie CA, Jain D, Laurie CC, Doheny KF, McHenry T, Resick J, Sanchez C, Jacobs J, Emanuele B, Vieira AR, Neiswanger K, Standley J, Czeizel AE, Deleyiannis F, Christensen K, Munger RG, Lie RT, Wilcox A, Romitti PA, Field LL, Padilla CD, Cutiongco-de la Paz EMC, Lidral AC, Valencia-Ramirez LC, Lopez-Palacio AM, Valencia DR, Arcos-Burgos M, Castilla EE, Mereb JC, Poletta FA, Orioli IM, Carvalho FM, Hecht JT, Blanton SH, Buxó CJ, Butali A, Mossey PA, Adeyemo WL, James O, Braimah RO, Aregbesola BS, Eshete MA, Deribew M, Koruyucu M, Seymen F, Ma L, de Salamanca JE, Weinberg SM, Moreno L, Cornell RA, Murray JC, Marazita ML (2016) A genome-wide association study of nonsyndromic cleft palate identifies an etiologic missense variant in GRHL3. Am J Hum Genet 98:744–754PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Moreno LM, Mansilla MA, Bullard SA, Cooper ME, Busch TD, Machida J, Johnson MK, Brauer D, Krahn K, Daack-Hirsch S, L’Heureux J, Valencia-Ramirez C, Rivera D, López AM, Moreno MA, Hing A, Lammer EJ, Jones M, Christensen K, Lie RT, Jugessur A, Wilcox AJ, Chines P, Pugh E, Doheny K, Arcos-Burgos M, Marazita ML, Murray JC, Lidral AC (2009) FOXE1 association with both isolated cleft lip with or without cleft palate, and isolated cleft palate. Hum Mol Genet 18:4879–4896PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Lammer EJ, Mohammed N, Iovannisci DM, Ma C, Lidral AC, Shaw GM (2016) Genetic variation of FOXE1 and risk for orofacial clefts in a California population. Am J Med Genet A 170:2770–2776PubMedCrossRefGoogle Scholar
  41. 41.
    Mohamad Shah NS, Salahshourifar I, Sulong S, Wan Sulaiman WA, Halim AS (2016) Discovery of candidate genes for nonsyndromic cleft lip palate through genome-wide linkage analysis of large extended families in the Malay population. BMC Genet 17:39PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Lennon CJ, Birkeland AC, Nuñez JAP, Su GH, Lanzano P, Guzman E, Celis K, Eisig SB, Hoffman D, Rendon MTG, Ostos H, Chung WK, Haddad J Jr (2012) Association of candidate genes with nonsyndromic clefts in Honduran and Colombian populations. Laryngoscope 122:2082–2087PubMedCrossRefGoogle Scholar
  43. 43.
    Bahuau M, Houdayer C, Tredano M, Soupre V, Couderc R, Vazquez MP (2002) FOXC2 truncating mutation in distichiasis, lymphedema, and cleft palate. Clin Genet 62:470–473PubMedCrossRefGoogle Scholar
  44. 44.
    Ozturk F, Li Y, Zhu X, Guda C, Nawshad A (2013) Systematic analysis of palatal transcriptome to identify cleft palate genes within TGFβ3-knockout mice alleles: RNA-Seq analysis of TGFβ3 mice. BMC Genomics 14:113PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Hatini V, Tao W, Lai E (1994) Expression of winged helix genes, BF-1 and BF-2, define adjacent domains within the developing forebrain and retina. J Neurobiol 25:1293–1309PubMedCrossRefGoogle Scholar
  46. 46.
    Ernstsson S, Pierrou S, Hulander M, Cederberg A, Hellqvist M, Carlsson P, Enerbäck S (1996) Characterization of the human forkhead gene FREAC-4. Evidence for regulation by Wilms’ tumor suppressor gene (WT-1) and p53. J Biol Chem 271:21094–21099PubMedCrossRefGoogle Scholar
  47. 47.
    Feng D, YE X, Zhu Z et al (2015) Comparative transcriptome analysis between metastatic and non-metastatic gastric cancer reveals potential biomarkers. Mol Med Rep 11:386–392PubMedCrossRefGoogle Scholar
  48. 48.
    Gao Y-F, Zhu T, Mao X-Y, Mao CX, Li L, Yin JY, Zhou HH, Liu ZQ (2017) Silencing of Forkhead box D1 inhibits proliferation and migration in glioma cells. Oncol Rep 37:1196–1202PubMedCrossRefGoogle Scholar
  49. 49.
    Gumbel JH, Patterson EM, Owusu SA, Kabat BE, Jung DO, Simmons J, Hopkins T, Ellsworth BS (2012) The forkhead transcription factor, Foxd1, is necessary for pituitary luteinizing hormone expression in mice. PLoS One 7:1–10CrossRefGoogle Scholar
  50. 50.
    Hatini V, Huh SO, Herzlinger D, Soares VC, Lai E (1996) Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of winged helix transcription factor BF-2. Genes Dev 10:1467–1478PubMedCrossRefGoogle Scholar
  51. 51.
    Herrera E, Marcus R, Li S, Williams SE, Erskine L, Lai E, Mason C (2004) Foxd1 is required for proper formation of the optic chiasm. Development 131:5727–5739PubMedCrossRefGoogle Scholar
  52. 52.
    van der Heul-Nieuwenhuijsen L, Dits NF, Jenster G (2009) Gene expression of forkhead transcription factors in the normal and diseased human prostate. BJU Int 103:1574–1580PubMedCrossRefGoogle Scholar
  53. 53.
    Hung C, Linn G, Chow YH, Kobayashi A, Mittelsteadt K, Altemeier WA, Gharib SA, Schnapp LM, Duffield JS (2013) Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med 188:820–830PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Jeong J (2004) Hedgehog signaling in the neural crest cells regulates the patterning and growth of facial primordia. Genes Dev 18:937–951PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Ju W, Yoo BC, Kim I-J, Kim JW, Kim SC, Lee HP (2009) Identification of genes with differential expression in chemoresistant epithelial ovarian cancer using high-density oligonucleotide microarrays. Oncol Res 18:47–56PubMedCrossRefGoogle Scholar
  56. 56.
    van Mens TE, Liang H-PH, Basu S, Hernandez I, Zogg M, May J, Zhan M, Yang Q, Foeckler J, Kalloway S, Sood R, Karlson CS, Weiler H (2017) Variable phenotypic penetrance of thrombosis in adult mice after tissue-selective and temporally controlled Thbd gene inactivation. Blood Adv 1:1148–1158PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kobayashi A, Mugford JW, Krautzberger AM, Naiman N, Liao J, McMahon AP (2014) Identification of a multipotent self-renewing stromal progenitor population during mammalian kidney organogenesis. Stem Cell Reports 3:650–662PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Levinson RS (2005) Foxd1-dependent signals control cellularity in the renal capsule, a structure required for normal renal development. Development 132:529–539PubMedCrossRefGoogle Scholar
  59. 59.
    Millington G, Elliott KH, Y-TT C et al (2017) Cilia-dependent GLI processing in neural crest cells is required for tongue development. Dev Biol 424:124–137PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Nagel S, Meyer C, Kaufmann M, Drexler HG, MacLeod RAF (2014) Deregulated FOX genes in Hodgkin lymphoma. Genes Chromosom Cancer 53:917–933PubMedCrossRefGoogle Scholar
  61. 61.
    Nakayama S, Soejima K, Yasuda H, Yoda S, Satomi R, Ikemura S, Terai H, Sato T, Yamaguchi N, Hamamoto J, Arai D, Ishioka K, Ohgino K, Naoki K, Betsuyaku T (2015) FOXD1 expression is associated with poor prognosis in non-small cell lung cancer. Anticancer Res 35:261–268PubMedGoogle Scholar
  62. 62.
    Newman EA, Kim DW, Wan J, Wang J, Qian J, Blackshaw S (2018) Foxd1 is required for terminal differentiation of anterior hypothalamic neuronal subtypes. Dev Biol 439:102–111PubMedCrossRefGoogle Scholar
  63. 63.
    Xu G, Li K, Zhang N, Zhu B, Feng G (2016) Screening driving transcription factors in the processing of gastric cancer. Gastroenterol Res Pract 2016:1–9Google Scholar
  64. 64.
    Yeo HC, Ting S, Brena RM, Koh G, Chen A, Toh SQ, Lim YM, Oh SKW, Lee DY (2016) Genome-wide transcriptome and binding sites analyses identify early FOX expressions for enhancing cardiomyogenesis efficiency of hESC cultures. Sci Rep 6:31068PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Zhang H, Palmer R, Gao X, Kreidberg J, Gerald W, Hsiao L, Jensen RV, Gullans SR, Haber DA (2003) Transcriptional activation of placental growth factor by the forkhead/winged helix transcription factor FoxD1. Curr Biol 13:1625–1629PubMedCrossRefGoogle Scholar
  66. 66.
    Zhang Y, Wang T, Wang S, Xiong Y, Zhang R, Zhang X, Zhao J, Yang AG, Wang L, Jia L (2018) Nkx2-2as suppression contributes to the pathogenesis of sonic hedgehog medulloblastoma. Cancer Res 78:962–973PubMedCrossRefGoogle Scholar
  67. 67.
    Baek J-I, Choi SY, Chacon-Heszele MF, Zuo X, Lipschutz JH (2014) Expression of Drosophila forkhead transcription factors during kidney development. Biochem Biophys Res Commun 446:15–17PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Zhao M, Zhou Y, Zhu B, Wan M, Jiang T, Tan Q, Liu Y, Jiang J, Luo S, Tan Y, Wu H, Renauer P, del Mar Ayala Gutiérrez M, Castillo Palma MJ, Ortega Castro R, Fernández-Roldán C, Raya E, Faria R, Carvalho C, Alarcón-Riquelme ME, Xiang Z, Chen J, Li F, Ling G, Zhao H, Liao X, Lin Y, Sawalha AH, Lu Q (2016) IFI44L promoter methylation as a blood biomarker for systemic lupus erythematosus. Ann Rheum Dis 75:1998–2006PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Zhou H, Lv Q, Guo Z (2018) Transcriptomic signature predicts the distant relapse in patients with ER+ breast cancer treated with tamoxifen for five years. Mol Med Rep 17:3152–3157PubMedGoogle Scholar
  70. 70.
    Carreres MI, Escalante A, Murillo B, Chauvin G, Gaspar P, Vegar C, Herrera E (2011) Transcription factor Foxd1 is required for the specification of the temporal retina in mammals. J Neurosci 31:5673–5681PubMedCrossRefGoogle Scholar
  71. 71.
    Cederberg A, Hulander M, Carlsson P, Enerbäck S (1999) The kidney-expressed winged helix transcription factor FREAC-4 is regulated by Ets-1: a possible role in kidney development. J Biol Chem 274:165–169PubMedCrossRefGoogle Scholar
  72. 72.
    Cheng P, Wang J, Waghmare I, Sartini S, Coviello V, Zhang Z, Kim SH, Mohyeldin A, Pavlyukov MS, Minata M, Valentim CLL, Chhipa RR, Bhat KPL, Dasgupta B, la Motta C, Kango-Singh M, Nakano I (2016) FOXD1-ALDH1A3 signaling is a determinant for the self-renewal and tumorigenicity of mesenchymal glioma stem cells. Cancer Res 76:7219–7230PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Koga M, Matsuda M, Kawamura T, Sogo T, Shigeno A, Nishida E, Ebisuya M (2014) Foxd1 is a mediator and indicator of the cell reprogramming process. Nat Commun 5:1–9CrossRefGoogle Scholar
  74. 74.
    Fetting JL, Guay JA, Karolak MJ, Iozzo RV, Adams DC, Maridas DE, Brown AC, Oxburgh L (2014) FOXD1 promotes nephron progenitor differentiation by repressing decorin in the embryonic kidney. Development 141:17–27PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Zhao Y-F, Zhao J-Y, Yue H, Hu KS, Shen H, Guo ZG, Su XJ (2015) FOXD1 promotes breast cancer proliferation and chemotherapeutic drug resistance by targeting p27. Biochem Biophys Res Commun 456:232–237PubMedCrossRefGoogle Scholar
  76. 76.
    Song R, Lopez MLSS, Yosypiv IV (2017) Foxd1 is an upstream regulator of the renin-angiotensin system during metanephric kidney development. Pediatr Res 82:855–862PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Yuasa J, Hirano S, Yamagata M, Noda M (1996) Visual projection map specified by topographic expression of transcription factors in the retina. Nature 382:632–635PubMedCrossRefGoogle Scholar
  78. 78.
    Dahle MK, Grønning LM, Cederberg A, Blomhoff HK, Miura N, Enerbäck S, Taskén KA, Taskén K (2002) Mechanisms of FOXC2- and FOXD1-mediated regulation of the RI alpha subunit of cAMP-dependent protein kinase include release of transcriptional repression and activation by protein kinase B alpha and cAMP. J Biol Chem 277:22902–22908PubMedCrossRefGoogle Scholar
  79. 79.
    Berg DT, Myers LJ, Richardson MA, Sandusky G, Grinnell BW (2005) Smad6s regulates plasminogen activator inhibitor-1 through a protein kinase C-β-dependent up-regulation of transforming growth factor-β. J Biol Chem 280:14943–14947PubMedCrossRefGoogle Scholar
  80. 80.
    Takahashi H, Sakuta H, Shintani T, Noda M (2009) Functional mode of FoxD1/CBF2 for the establishment of temporal retinal specificity in the developing chick retina. Dev Biol 331:300–310PubMedCrossRefGoogle Scholar
  81. 81.
    Fink DM, Sun MR, Heyne GW, Everson JL, Chung HM, Park S, Sheets MD, Lipinski RJ (2018) Coordinated d-cyclin/Foxd1 activation drives mitogenic activity of the sonic hedgehog signaling pathway. Cell Signal 44:1–9PubMedCrossRefGoogle Scholar
  82. 82.
    Piscione TD, Waters AM (2008) Structural and functional development of the kidney. In: Geary DF, Schaefer F (eds) Comprehensive pediatric nephrology, Mosby, Philadelphia, pp 91–129.
  83. 83.
    Hendry C, Rumballe B, Moritz K, Little MH (2011) Defining and redefining the nephron progenitor population. Pediatr Nephrol 26:1395–1406PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Mugford JW, Sipilä P, McMahon JA, McMahon AP (2008) Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev Biol 324:88–98PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Li W, Hartwig S, Rosenblum ND (2014) Developmental origins and functions of stromal cells in the normal and diseased mammalian kidney. Dev Dyn 243:853–863PubMedCrossRefGoogle Scholar
  86. 86.
    Davies J (2017) Pax2: a “keep to the path” sign on Waddington’s epigenetic landscape. Dev Cell 41:331–332PubMedCrossRefGoogle Scholar
  87. 87.
    Nagy II, Xu Q, Naillat F et al (2016) Impairment of Wnt11 function leads to kidney tubular abnormalities and secondary glomerular cystogenesis. BMC Dev Biol 16:30PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Paroly SS, Wang F, Spraggon L, Merregaert J, Batourina E, Tycko B, Schmidt-Ott KM, Grimmond S, Little M, Mendelsohn C (2013) Stromal protein Ecm1 regulates ureteric bud patterning and branching. PLoS One 8:e84155PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Yallowitz AR, Hrycaj SM, Short KM, Smyth IM, Wellik DM (2011) Hox10 genes function in kidney development in the differentiation and integration of the cortical stroma. PLoS One 6:e23410PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Hum S, Rymer C, Schaefer C, Bushnell D, Sims-Lucas S (2014) Ablation of the renal stroma defines its critical role in nephron progenitor and vasculature patterning. PLoS One 9:e88400PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Mukherjee E, Maringer KV, Papke E et al (2017) Endothelial markers expressing stromal cells are critical for kidney formation. Am J Physiol Ren Physiol.
  92. 92.
    Sequeira-Lopez MLS, Lin EE, Li M, Hu Y, Sigmund CD, Gomez RA (2015) The earliest metanephric arteriolar progenitors and their role in kidney vascular development. Am J Phys Regul Integr Comp Phys 308:R138–R149Google Scholar
  93. 93.
    Humphreys BD, Lin S-L, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, McMahon AP, Duffield JS (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176:85–97PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Chang YT, Yang CC, Pan SY, Chou YH, Chang FC, Lai CF, Tsai MH, Hsu HL, Lin CH, Chiang WC, Wu MS, Chu TS, Chen YM, Lin SL (2016) DNA methyltransferase inhibition restores erythropoietin production in fibrotic murine kidneys. J Clin Invest 126:721–731PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Ohmori T, Tanigawa S, Kaku Y, Fujimura S, Nishinakamura R (2015) Sall1 in renal stromal progenitors non-cell autonomously restricts the excessive expansion of nephron progenitors. Sci Rep 5:1–11CrossRefGoogle Scholar
  96. 96.
    Gomez IG, Duffield JS (2014) The FOXD1 lineage of kidney perivascular cells and myofibroblasts: functions and responses to injury. Kidney Int Suppl 4:26–33CrossRefGoogle Scholar
  97. 97.
    Kobayashi H, Liu Q, Binns TC, Urrutia AA, Davidoff O, Kapitsinou PP, Pfaff AS, Olauson H, Wernerson A, Fogo AB, Fong GH, Gross KW, Haase VH (2016) Distinct subpopulations of FOXD1 stroma-derived cells regulate renal erythropoietin. J Clin Invest 126:1926–1938PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Fanni D, Gerosa C, Vinci L, Ambu R, Dessì A, Eyken PV, Fanos V, Faa G (2016) Interstitial stromal progenitors during kidney development: here, there and everywhere. J Matern Fetal Neonatal Med 29:1–6CrossRefGoogle Scholar
  99. 99.
    Junttila S, Saarela U, Halt K, Manninen A, Parssinen H, Lecca MR, Brandli AW, Sims-Lucas S, Skovorodkin I, Vainio SJ (2015) Functional genetic targeting of embryonic kidney progenitor cells ex vivo. J Am Soc Nephrol 26:1126–1137PubMedCrossRefGoogle Scholar
  100. 100.
    Sims-Lucas S, Schaefer C, Bushnell D, Ho J, Logar A, Prochownik E, Gittes G, Bates CM (2013) Endothelial progenitors exist within the kidney and lung mesenchyme. PLoS One 8:1–8CrossRefGoogle Scholar
  101. 101.
    Lemos DR, Marsh G, Huang A, Campanholle G, Aburatani T, Dang L, Gomez I, Fisher K, Ligresti G, Peti-Peterdi J, Duffield JS (2016) Maintenance of vascular integrity by pericytes is essential for normal kidney function. Am J Physiol Ren Physiol 311:F1230–F1242CrossRefGoogle Scholar
  102. 102.
    Gerl K, Steppan D, Fuchs M, Wagner C, Willam C, Kurtz A, Kurt B (2017) Activation of hypoxia signaling in stromal progenitors impairs kidney development. Am J Pathol 187:1496–1511PubMedCrossRefGoogle Scholar
  103. 103.
    Lin EE, Sequeira-Lopez MLS, Gomez RA (2014) RBP-J in FOXD1+ renal stromal progenitors is crucial for the proper development and assembly of the kidney vasculature and glomerular mesangial cells. Am J Physiol Renal Physiol 306:F249–F258PubMedCrossRefGoogle Scholar
  104. 104.
    Boyle SC, Liu Z, Kopan R (2014) Notch signaling is required for the formation of mesangial cells from a stromal mesenchyme precursor during kidney development. Development 141:346–354PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Duffield JS, Humphreys BD (2011) Origin of new cells in the adult kidney: results from genetic labeling techniques. Kidney Int 79:494–501PubMedCrossRefGoogle Scholar
  106. 106.
    Schrimpf C, Duffield JS (2011) Mechanisms of fibrosis: the role of the pericyte. Curr Opin Nephrol Hypertens 20:297–305PubMedCrossRefGoogle Scholar
  107. 107.
    Nakagawa N, Duffield JS (2013) Myofibroblasts in fibrotic kidneys. Curr Pathobiol Rep 1:189–198CrossRefGoogle Scholar
  108. 108.
    Duffield JS (2014) Cellular and molecular mechanisms in kidney fibrosis. J Clin Invest 124:2299–2306PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Erskine L, Herrera E (2014) Connecting the retina to the brain. ASN Neuro 6:175909141456210CrossRefGoogle Scholar
  110. 110.
    Zhou ZJ, McCall MA (2008) Retinal ganglion cells in model organisms: development, function and disease. J Physiol 586:4343–4345PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Sernagor E, Eglen SJ, Wong RO (2001) Development of retinal ganglion cell structure and function. Prog Retin Eye Res 20:139–174PubMedCrossRefGoogle Scholar
  112. 112.
    Sanes JR, Masland RH (2015) The types of retinal ganglion cells: current status and implications for neuronal classification. Annu Rev Neurosci 38:221–246PubMedCrossRefGoogle Scholar
  113. 113.
    Petros TJ, Rebsam A, Mason CA (2008) Retinal axon growth at the optic chiasm: to cross or not to cross. Annu Rev Neurosci 31:295–315PubMedCrossRefGoogle Scholar
  114. 114.
    Austin CP, Feldman DE, Ida JA, Cepko CL (1995) Vertebrate retinal ganglion cells are selected from competent progenitors by the action of Notch. Development 121:3637–3650PubMedGoogle Scholar
  115. 115.
    Henrique D, Hirsinger E, Adam J, Roux IL, Pourquié O, Ish-Horowicz D, Lewis J (1997) Maintenance of neuroepithelial progenitor cells by Delta-Notch signalling in the embryonic chick retina. Curr Biol 7:661–670PubMedCrossRefGoogle Scholar
  116. 116.
    Esteve P, Sandonìs A, Cardozo M, Malapeira J, Ibañez C, Crespo I, Marcos S, Gonzalez-Garcia S, Toribio ML, Arribas J, Shimono A, Guerrero I, Bovolenta P (2011) SFRPs act as negative modulators of ADAM10 to regulate retinal neurogenesis. Nat Neurosci 14:562–569PubMedCrossRefGoogle Scholar
  117. 117.
    Maurer KA, Riesenberg AN, Brown NL (2014) Notch signaling differentially regulates Atoh7 and Neurog2 in the distal mouse retina. Development 141:3243–3254PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Pacal M, Bremner R (2014) Induction of the ganglion cell differentiation program in human retinal progenitors before cell cycle exit. Dev Dyn 243:712–729PubMedCrossRefGoogle Scholar
  119. 119.
    Prasov L, Glaser T (2012) Dynamic expression of ganglion cell markers in retinal progenitors during the terminal cell cycle. Mol Cell Neurosci 50:160–168PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Pratt T (2004) The winged helix transcription factor Foxg1 facilitates retinal ganglion cell axon crossing of the ventral midline in the mouse. Development 131:3773–3784PubMedCrossRefGoogle Scholar
  121. 121.
    Herrera E, Brown L, Aruga J et al (2003) Zic2 patterns binocular vision by specifying the uncrossed retinal projection. Cell 114:545–557PubMedCrossRefGoogle Scholar
  122. 122.
    Williams SE, Mann F, Erskine L, Sakurai T, Wei S, Rossi DJ, Gale NW, Holt CE, Mason CA, Henkemeyer M (2003) Ephrin-B2 and EphB1 mediate retinal axon divergence at the optic chiasm. Neuron 39:919–935PubMedCrossRefGoogle Scholar
  123. 123.
    Tian NM, Pratt T, Price DJ (2008) Foxg1 regulates retinal axon pathfinding by repressing an ipsilateral program in nasal retina and by causing optic chiasm cells to exert a net axonal growth-promoting activity. Development 135:4081–4089PubMedCrossRefGoogle Scholar
  124. 124.
    Sanchez-Arrones L, Nieto-Lopez F, Sanchez-Camacho C, Carreres MI, Herrera E, Okada A, Bovolenta P (2013) Shh/Boc signaling is required for sustained generation of ipsilateral projecting ganglion cells in the mouse retina. J Neurosci 33:8596–8607PubMedCrossRefGoogle Scholar
  125. 125.
    Wang Q, Marcucci F, Cerullo I, Mason C (2016) Ipsilateral and contralateral retinal ganglion cells express distinct genes during decussation at the optic chiasm. eNeuro 3.
  126. 126.
    Hernández-Bejarano M, Gestri G, Spawls L, Nieto-López F, Picker A, Tada M, Brand M, Bovolenta P, Wilson SW, Cavodeassi F (2015) Opposing Shh and Fgf signals initiate nasotemporal patterning of the zebrafish retina. Development 142:3933–3942PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Mariani FV, Harland RM (1998) XBF-2 is a transcriptional repressor that converts ectoderm into neural tissue. Development 125:5019–5031PubMedGoogle Scholar
  128. 128.
    Yaklichkin S, Vekker A, Stayrook S, Lewis M, Kessler DS (2007) Prevalence of the EH1 Groucho interaction motif in the metazoan Fox family of transcriptional regulators. BMC Genomics 8:201PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Myatt SS, Lam EW-F (2007) The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer 7:847–859PubMedCrossRefGoogle Scholar
  130. 130.
    Lakhal B, Philibert P, Laissue P, Benayoun B, Dipietromaria A, Braham R, Elghezal H, Saad A, Feellous M, Veitia RA, Sultan C (2009) Molecular genetics of secondary amenorrhea: functional analysis of an heterozygous variant of FOX-L2 gene (G187D) supports its involvement in non-syndromic premature ovarian failure. Horm Res 72:54–54Google Scholar
  131. 131.
    Katoh M, Igarashi M, Fukuda H, Nakagama H, Katoh M (2013) Cancer genetics and genomics of human FOX family genes. Cancer Lett 328:198–206PubMedCrossRefGoogle Scholar
  132. 132.
    Chen J, Qian Z, Li F, Li J, Lu Y (2017) Integrative analysis of microarray data to reveal regulation patterns in the pathogenesis of hepatocellular carcinoma. Gut Liver 11:112–120PubMedCrossRefGoogle Scholar
  133. 133.
    Cha J, Sun X, Dey SK (2012) Mechanisms of implantation: strategies for successful pregnancy. Nat Med 18:1754–1767PubMedCrossRefGoogle Scholar
  134. 134.
    Koot YEM, Teklenburg G, Salker MS, Brosens JJ, Macklon NS (2012) Molecular aspects of implantation failure. Biochim Biophys Acta 1822:1943–1950PubMedCrossRefGoogle Scholar
  135. 135.
    White MD, Plachta N (2015) How adhesion forms the early mammalian embryo. Curr Top Dev Biol 112:1–17PubMedCrossRefGoogle Scholar
  136. 136.
    L’Hôte D, Serres C, Laissue P et al (2007) Centimorgan-range one-step mapping of fertility traits using interspecific recombinant congenic mice. Genetics 176:1907–1921PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Burgio G, Szatanik M, J-LL G et al (2007) Interspecific recombinant congenic strains between C57BL/6 and mice of the Mus spretus species: a powerful tool to dissect genetic control of complex traits. Genetics 177:2321–2333PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Laissue P, Burgio G, L’Hôte D et al (2009) Identification of quantitative trait loci responsible for embryonic lethality in mice assessed by ultrasonography. Int J Dev Biol 53:623–629PubMedCrossRefGoogle Scholar
  139. 139.
    Laissue P, L’Hôte D, Serres C, Vaiman D (2009) Mouse models for identifying genes modulating fertility parameters. Animal 3:55–71PubMedCrossRefGoogle Scholar
  140. 140.
    L’Hôte D, Laissue P, Serres C et al (2010) Interspecific resources: a major tool for quantitative trait locus cloning and speciation research. BioEssays 32:132–142PubMedCrossRefGoogle Scholar
  141. 141.
    Vatin M, Burgio G, Renault G, Laissue P, Firlej V, Mondon F, Montagutelli X, Vaiman D, Serres C, Ziyyat A (2012) Refined mapping of a quantitative trait locus on chromosome 1 responsible for mouse embryonic death. PLoS One 7:e43356. PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health SciencesUniversidad del RosarioBogotáColombia

Personalised recommendations