Advertisement

Journal of Molecular Medicine

, Volume 96, Issue 8, pp 791–806 | Cite as

Trimetazidine protects against myocardial ischemia/reperfusion injury by inhibiting excessive autophagy

  • Shiyong Wu
  • Guanglei Chang
  • Lei Gao
  • Dan Jiang
  • Liyou Wang
  • Guoxing Li
  • Xuexiu Luo
  • Shu Qin
  • Xueli Guo
  • Dongying Zhang
Original Article

Abstract

Trimetazidine (TMZ) has been demonstrated to have protective effects against myocardial ischemia/reperfusion (MI/R) injury. In the present study, we investigated the effects and the underlying mechanisms of TMZ on autophagy during MI/R in vivo and in vitro. In the in vivo study, an animal model of MI/R was induced by coronary occlusion. TMZ (20 mg/kg/day) protected the rat hearts from MI/R-induced heart failure by increasing ejection fraction and fractional shortening and decreasing end-systolic volume, end-diastolic volume, left ventricular (LV) internal diameter at systole, and LV internal diameter at diastole; it alleviated myocardial injury and oxidative stress by decreasing LDH, creatine kinase MB isoenzyme, ROS, and MDA levels and increasing SOD and glutathione peroxidase levels in plasma. TMZ also reduced myocardial infarct size and apoptosis. Moreover, TMZ markedly inhibited MI/R-induced autophagy by decreasing the protein and messenger RNA levels of LC3-II, Beclin1, ATG5, and ATG7 and the number of autophagosomes and by involving the AKT/mTOR pathway. Further, in the in vitro experiments, H9c2 cells were incubated with TMZ (40 μM) to explore the direct effects of TMZ following exposure to hypoxia and reoxygenation (H/R). TMZ increased cell viability and the concentration of intracellular SOD and inhibited H/R-induced cell apoptosis and ROS production. Moreover, TMZ decreased the number of autophagosomes and autophagy-related protein expression; it also upregulated p-AKT and p-mTOR expression. In addition, TMZ augmented Bcl-2 protein expression and diminished Bax protein expression, the Bax/Bcl-2 rate, and cleaved caspase-3 level. However, these effects on H9c2 cells were notably abolished by the PI3K inhibitor LY294002. In conclusion, our results showed that TMZ inhibited I/R-induced excessive autophagy and apoptosis, which was, at least partly, mediated by activating the AKT/mTOR pathway.

Key messages

  • TMZ improved cardiac function, alleviated myocardial injury and oxidative stress, and reduced the myocardial infarct area and apoptosis.

  • TMZ inhibited MI/R-induced myocardial autophagy, H/R-induced H9c2 cell apoptosis, and autophagy flux.

  • The effect of TMZ on autophagy was repressed by LY294002.

  • TMZ protected against MI/R injury by inhibiting excessive autophagy via activating the AKT/mTOR pathway.

Keywords

Trimetazidine Autophagy Ischemia/reperfusion Hypoxia/reoxygenation H9c2 cell 

Notes

Acknowledgments

We sincerely thank Lixue Chen and Guangcheng Qin of the Central Laboratory and Qian Dong of the Department of Cardiology of the First Affiliated Hospital of Chongqing Medical University for their assistance with these experiments.

Funding information

This work was supported by the National Natural Science Fund of China (Grant No. 81570212), the Cardiac Rehabilitation and Metabolic Therapy Research Fund (Grant No. ky_2016_12_20), the Science and Technology Plan Project of Chongqing Yuzhong District (Grant No. 20140111), the Chinese Medicine Science and Technology Project of Chongqing Health and Family Planning Commission (Grant No. ZY201702073), the Postgraduate Research and Innovation Project of Chongqing (Grant No. CYB15093), and the “Advanced” Research Foundation Project of Cardiovascular Health Institute of China Cardiovascular Health Alliance (Grant No. ky_2017_07_08).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no competing interests.

References

  1. 1.
    Gewirtz H, Dilsizian V (2017) Myocardial viability: survival mechanisms and molecular imaging targets in acute and chronic ischemia. Circ Res 120:1197–1212CrossRefPubMedGoogle Scholar
  2. 2.
    Hausenloy DJ, Yellon DM (2015) Targeting myocardial reperfusion injury—the search continues. N Engl J Med 373:1073–1075CrossRefPubMedGoogle Scholar
  3. 3.
    Seidlmayer LK, Juettner VV, Kettlewell S, Pavlov EV, Blatter LA, Dedkova EN (2015) Distinct mPTP activation mechanisms in ischaemia-reperfusion: contributions of Ca2+, ROS, pH, and inorganic polyphosphate. Cardiovasc Res 106:237–248CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bourke LT, McDonnell T, McCormick J, Pericleous C, Ripoll VM, Giles I, Rahman A, Stephanou A, Ioannou Y (2017) Antiphospholipid antibodies enhance rat neonatal cardiomyocyte apoptosis in an in vitro hypoxia/reoxygenation injury model via p38 MAPK. Cell Death Dis 8:e2549.  https://doi.org/10.1038/cddis.2016.235 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sciarretta S, Maejima Y, Zablocki D, Sadoshima J (2017) The role of autophagy in the heart. Annu Rev Physiol 80:1–26CrossRefPubMedGoogle Scholar
  6. 6.
    Gustafsson AB, Gottlieb RA (2009) Autophagy in ischemic heart disease. Circ Res 104:150–158CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ma X, Liu H, Foyil SR, Godar RJ, Weinheimer CJ, Diwan A (2012) Autophagy is impaired in cardiac ischemia-reperfusion injury. Autophagy 8:1394–1396CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hao M, Zhu S, Hu L, Zhu H, Wu X, Li Q (2017) Myocardial ischemic postconditioning promotes autophagy against ischemia reperfusion injury via the activation of the nNOS/AMPK/mTOR pathway. Int J Mol Sci 18.  https://doi.org/10.3390/ijms18030614
  9. 9.
    Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B, Sadoshima J (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100:914–922CrossRefPubMedGoogle Scholar
  10. 10.
    Sadoshima J (2008) The role of autophagy during ischemia/reperfusion. Autophagy 4:402–403CrossRefPubMedGoogle Scholar
  11. 11.
    Tannous P, Zhu H, Nemchenko A, Berry JM, Johnstone JL, Shelton JM, Miller FJ Jr, Rothermel BA, Hill JA (2008) Intracellular protein aggregation is a proximal trigger of cardiomyocyte autophagy. Circulation 117:3070–3078CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Quinsay MN, Thomas RL, Lee Y, Gustafsson AB (2010) Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore. Autophagy 6:855–862CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9:1004–1010CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zhu H, Tannous P, Johnstone JL, Kong Y, Shelton JM, Richardson JA, Le V, Levine B, Rothermel BA, Hill JA (2007) Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest 117:1782–1793CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Huang Z, Wu S, Kong F, Cai X, Ye B, Shan P, Huang W (2017) MicroRNA-21 protects against cardiac hypoxia/reoxygenation injury by inhibiting excessive autophagy in H9c2 cells via the Akt/mTOR pathway. J Cell Mol Med 21:467–474CrossRefPubMedGoogle Scholar
  16. 16.
    Fan G, Yu J, Asare PF, Wang L, Zhang H, Zhang B, Zhu Y, Gao X (2016) Danshensu alleviates cardiac ischaemia/reperfusion injury by inhibiting autophagy and apoptosis via activation of mTOR signalling. J Cell Mol Med 20:1908–1919CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Di Napoli P, Di Giovanni P, Gaeta MA, D’Apolito G, Barsotti A (2007) Beneficial effects of trimetazidine treatment on exercise tolerance and B-type natriuretic peptide and troponin T plasma levels in patients with stable ischemic cardiomyopathy. Am Heart J 154:602.e601–602.e605CrossRefGoogle Scholar
  18. 18.
    Zhang L, Lu Y, Jiang H, Zhang L, Sun A, Zou Y, Ge J (2012) Additional use of trimetazidine in patients with chronic heart failure: a meta-analysis. J Am Coll Cardiol 59:913–922CrossRefPubMedGoogle Scholar
  19. 19.
    Ramezani-Aliakbari F, Badavi M, Dianat M, Mard SA, Ahangarpour A (2018) The beneficial effects of trimetazidine on reperfusion-induced arrhythmia in diabetic rats. Exp Clin Endocrinol Diabetes.  https://doi.org/10.1055/s-0043-122881
  20. 20.
    Zhou X, Li C, Xu W, Chen J (2012) Trimetazidine protects against smoking-induced left ventricular remodeling via attenuating oxidative stress, apoptosis, and inflammation. PLoS One 7:e40424.  https://doi.org/10.1371/journal.pone.0040424 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wu Q, Qi B, Liu Y, Cheng B, Liu L, Li Y, Wang Q (2013) Mechanisms underlying protective effects of trimetazidine on endothelial progenitor cells biological functions against H2O2-induced injury: involvement of antioxidation and Akt/eNOS signaling pathways. Eur J Pharmacol 707:87–94CrossRefPubMedGoogle Scholar
  22. 22.
    Argaud L, Gomez L, Gateau-Roesch O, Couture-Lepetit E, Loufouat J, Robert D, Ovize M (2005) Trimetazidine inhibits mitochondrial permeability transition pore opening and prevents lethal ischemia-reperfusion injury. J Mol Cell Cardiol 39:893–899CrossRefPubMedGoogle Scholar
  23. 23.
    Khan M, Meduru S, Mostafa M, Khan S, Hideg K, Kuppusamy P (2010) Trimetazidine, administered at the onset of reperfusion, ameliorates myocardial dysfunction and injury by activation of p38 mitogen-activated protein kinase and Akt signaling. J Pharmacol Exp Ther 333:421–429CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Liu Z, Chen JM, Huang H, Kuznicki M, Zheng S, Sun W, Quan N, Wang L, Yang H, Guo HM et al (2016) The protective effect of trimetazidine on myocardial ischemia/reperfusion injury through activating AMPK and ERK signaling pathway. Metab Clin Exp 65:122–130CrossRefPubMedGoogle Scholar
  25. 25.
    Ferraro E, Giammarioli AM, Caldarola S, Lista P, Feraco A, Tinari A, Salvatore AM, Malorni W, Berghella L, Rosano G (2013) The metabolic modulator trimetazidine triggers autophagy and counteracts stress-induced atrophy in skeletal muscle myotubes. FEBS J 280:5094–5108CrossRefPubMedGoogle Scholar
  26. 26.
    Zaouali MA, Boncompagni E, Reiter RJ, Bejaoui M, Freitas I, Pantazi E, Folch-Puy E, Abdennebi HB, Garcia-Gil FA, Rosello-Catafau J (2013) AMPK involvement in endoplasmic reticulum stress and autophagy modulation after fatty liver graft preservation: a role for melatonin and trimetazidine cocktail. J Pineal Res 55:65–78CrossRefPubMedGoogle Scholar
  27. 27.
    Pantazi E, Zaouali MA, Bejaoui M, Folch-Puy E, Ben Abdennebi H, Varela AT, Rolo AP, Palmeira CM, Rosello-Catafau J (2015) Sirtuin 1 in rat orthotopic liver transplantation: an IGL-1 preservation solution approach. World J Gastroenterol 21:1765–1774CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhong Y, Zhong P, He S, Zhang Y, Tang L, Ling Y, Fu S, Tang Y, Yang P, Luo T et al (2017) Trimetazidine protects cardiomyocytes against hypoxia/reoxygenation injury by promoting AMP-activated protein kinase-dependent autophagic flux. J Cardiovasc Pharmacol 69:389–397CrossRefPubMedGoogle Scholar
  29. 29.
    Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8:445–544CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Di Napoli P, Taccardi AA, Barsotti A (2005) Long term cardioprotective action of trimetazidine and potential effect on the inflammatory process in patients with ischaemic dilated cardiomyopathy. Heart 91:161–165CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Pantos C, Bescond-Jacquet A, Tzeis S, Paizis I, Mourouzis I, Moraitis P, Malliopoulou V, Politi ED, Karageorgiou H, Varonos D et al (2005) Trimetazidine protects isolated rat hearts against ischemia-reperfusion injury in an experimental timing-dependent manner. Basic Res Cardiol 100:154–160CrossRefPubMedGoogle Scholar
  32. 32.
    Ruixing Y, Wenwu L, Al-Ghazali R (2007) Trimetazidine inhibits cardiomyocyte apoptosis in a rabbit model of ischemia-reperfusion. Trans Res 149:152–160CrossRefGoogle Scholar
  33. 33.
    Dehina L, Vaillant F, Tabib A, Bui-Xuan B, Chevalier P, Dizerens N, Bui-Xuan C, Descotes J, Blanc-Guillemaud V, Lerond L et al (2013) Trimetazidine demonstrated cardioprotective effects through mitochondrial pathway in a model of acute coronary ischemia. Naunyn Schmiedeberg’s Arch Pharmacol 386:205–215CrossRefGoogle Scholar
  34. 34.
    Qiao Z, Ma J, Liu H (2011) Evaluation of the antioxidant potential of Salvia miltiorrhiza ethanol extract in a rat model of ischemia-reperfusion injury. Molecules (Basel, Switzerland) 16:10002–10012CrossRefGoogle Scholar
  35. 35.
    Dedkova EN, Seidlmayer LK, Blatter LA (2013) Mitochondria-mediated cardioprotection by trimetazidine in rabbit heart failure. J Mol Cell Cardiol 59:41–54CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zhang L, Ding WY, Wang ZH, Tang MX, Wang F, Li Y, Zhong M, Zhang Y, Zhang W (2016) Early administration of trimetazidine attenuates diabetic cardiomyopathy in rats by alleviating fibrosis, reducing apoptosis and enhancing autophagy. J Transl Med 14:109CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Meyer G, Czompa A, Reboul C, Csepanyi E, Czegledi A, Bak I, Balla G, Balla J, Tosaki A, Lekli I (2013) The cellular autophagy markers Beclin-1 and LC3B-II are increased during reperfusion in fibrillated mouse hearts. Curr Pharm Des 19:6912–6918CrossRefPubMedGoogle Scholar
  38. 38.
    Sciarretta S, Hariharan N, Monden Y, Zablocki D, Sadoshima J (2011) Is autophagy in response to ischemia and reperfusion protective or detrimental for the heart? Pediatr Cardiol 32:275–281CrossRefPubMedGoogle Scholar
  39. 39.
    Yao T, Ying X, Zhao Y, Yuan A, He Q, Tong H, Ding S, Liu J, Peng X, Gao E et al (2015) Vitamin D receptor activation protects against myocardial reperfusion injury through inhibition of apoptosis and modulation of autophagy. Antioxid Redox Signal 22:633–650CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zheng Y, Gu S, Li X, Tan J, Liu S, Jiang Y, Zhang C, Gao L, Yang HT (2017) Berbamine postconditioning protects the heart from ischemia/reperfusion injury through modulation of autophagy. Cell Death Dis 8:e2577.  https://doi.org/10.1038/cddis.2017.7 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Karar J, Maity A (2011) PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci 4:51CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    LoRusso PM (2016) Inhibition of the PI3K/AKT/mTOR pathway in solid tumors. J Clin Oncol 34:3803–3815CrossRefPubMedGoogle Scholar
  43. 43.
    Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) mTOR regulation of autophagy. FEBS Lett 584:1287–1295CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168:960–976CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lekli I, Haines DD, Balla G, Tosaki A (2017) Autophagy: an adaptive physiological countermeasure to cellular senescence and ischaemia/reperfusion-associated cardiac arrhythmias. J Cell Mol Med 21:1058–1072CrossRefPubMedGoogle Scholar
  46. 46.
    Jiang YQ, Chang GL, Wang Y, Zhang DY, Cao L, Liu J (2016) Geniposide prevents hypoxia/reoxygenation-induced apoptosis in H9c2 cells: improvement of mitochondrial dysfunction and activation of GLP-1R and the PI3K/AKT signaling pathway. Cell Physiol Biochem 39:407–421CrossRefPubMedGoogle Scholar
  47. 47.
    Shu L, Zhang W, Huang C, Huang G, Su G (2017) Troxerutin protects against myocardial ischemia/reperfusion injury via Pi3k/Akt pathway in rats. Cell Physiol Biochem 44:1939–1948CrossRefPubMedGoogle Scholar
  48. 48.
    Zhang Z, Li H, Chen S, Li Y, Cui Z, Ma J (2017) Knockdown of microRNA-122 protects H9c2 cardiomyocytes from hypoxia-induced apoptosis and promotes autophagy. Med Sci Monit 23:4284–4290CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shiyong Wu
    • 1
  • Guanglei Chang
    • 1
  • Lei Gao
    • 1
  • Dan Jiang
    • 1
  • Liyou Wang
    • 1
  • Guoxing Li
    • 1
  • Xuexiu Luo
    • 1
  • Shu Qin
    • 1
  • Xueli Guo
    • 2
  • Dongying Zhang
    • 1
  1. 1.Department of CardiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
  2. 2.Department of Vascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina

Personalised recommendations