Advertisement

Journal of Molecular Medicine

, Volume 96, Issue 8, pp 819–829 | Cite as

Expression of IL-17F is associated with non-pathogenic Th17 cells

  • Florian Wanke
  • Yilang Tang
  • Konrad Gronke
  • Sabrina Klebow
  • Sonja Moos
  • Judith Hauptmann
  • Arthi Shanmugavadivu
  • Tommy Regen
  • Ilgiz A. Mufazalov
  • Lauren A. Gabriel
  • Sonja Reißig
  • Andreas Diefenbach
  • Florian C. Kurschus
  • Ari Waisman
Original Article

Abstract

IL-17A and IL-17F share the highest sequence homology of the IL-17 family and signal via the same IL-17RA/RC receptor heterodimer. To better explore the expression of these two cytokines, we used a double reporter mouse strain (IL-17DR mice), where IL-17A expressing cells are marked by enhanced green fluorescent protein (eGFP) while red fluorescence protein (RFP) reports the expression of IL-17F. In steady state, we found that Th17 and γδ T cells only expressed IL-17A, while IL-17F expression was restricted to CD8 T cells (Tc17) and innate lymphoid cells (ILC type 3) of the gut. In experimental autoimmune encephalomyelitis, the vast majority of CNS-infiltrating Th17 cells expressed IL-17A but not IL-17F. In contrast, anti-CD3-induced, TGF-β-driven Th17 cells in the gut expressed both of these IL-17 cytokines. In line with this, in vitro differentiation of Th17 cells in the presence of IL-1β led primarily to IL-17A expressing T cells, while TGF-β induced IL-17F co-expressing Th17 cells. Our results suggest that expression of IL-17F is associated with non-pathogenic T cells, pointing to a differential function of IL-17A versus IL-17F.

Key messages

  • Naïve mice: CD4+ T cells and γδ T cells express IL-17A, and Tc17 cells express IL-17F. Gut ILC3 show differential expression of IL17A and F.

  • Th17 differentiation with TGF-β1 induces IL-17A and F, whereas IL-1β induced cells expressing IL-17A.

  • Th17 cells in EAE in CNS express IL-17A only.

  • Gut Th17 cells induced by anti-CD3 express IL-17A and F together as skin γδ T cells of IMQ-treated mice.

Keywords

IL-17F Th17 cells IL-17A EAE Reporter mice 

Notes

Acknowledgements

We thank Bettina Kalt, Petra Adams, and Michaela Blanfeld for excellent technical assistance. We acknowledge Steffanie Bürger and Ina Schäfer from the Institute for Molecular Biology in Mainz for excellent assistance with the flow cytometry. We thank Svenja Schüler for help with statistical data representation. We are grateful to Richard Flavell and Chen Dong to share with us the reporter mouse lines used in this study. This work was supported by the Deutsche Forschungsgemeinschaft SFB/TR-128 to F.C.K. and A.W. and by SFB/TR-156 to A.W., A.D., and F.C.K.

Compliance with ethical standards

All experiments with mice were carried out in accordance with the guidelines of the Central Animal Facility Institution of Mainz and in accordance with relevant laws and guidelines with permission by the state Rhineland-Palatinate (animal experimentation applications (TVA) nos. G13-1-099 and G12-1-057). The approval process contained an ethical committee meeting instated by the Landesuntersuchungsamt Rheinland-Pfalz.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Waisman A, Hauptmann J, Regen T (2015) The role of IL-17 in CNS diseases. Acta Neuropathol 129:625–637CrossRefPubMedGoogle Scholar
  2. 2.
    Kolls JK, Linden A (2004) Interleukin-17 family members and inflammation. Immunity 21:467–476CrossRefPubMedGoogle Scholar
  3. 3.
    Rouvier E, Luciani MF, Mattei MG, Denizot F, Golstein P (1993) CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol 150:5445–5456PubMedGoogle Scholar
  4. 4.
    Yang XO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS, Chung Y, Ma L, Shah B, Panopoulos AD, Schluns KS, Watowich SS, Tian Q, Jetten AM, Dong C (2008) T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 28:29–39CrossRefPubMedGoogle Scholar
  5. 5.
    Takatori H, Kanno Y, Watford WT, Tato CM, Weiss G, Ivanov II, Littman DR, O'Shea JJ (2009) Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J Exp Med 206:35–41CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Michel ML, Keller AC, Paget C, Fujio M, Trottein F, Savage PB, Wong CH, Schneider E, Dy M, Leite-de-Moraes MC (2007) Identification of an IL-17-producing NK1.1 (neg) iNKT cell population involved in airway neutrophilia. J Exp Med 204:995–1001CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Michel ML, Mendes-da-Cruz D, Keller AC, Lochner M, Schneider E, Dy M, Eberl G, Leite-de-Moraes MC (2008) Critical role of ROR-gammat in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation. Proc Natl Acad Sci U S A 105:19845–19850CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH (2009) Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells , amplifying Th17 responses and autoimmunity. Immunity 31:331–341CrossRefPubMedGoogle Scholar
  9. 9.
    Roark CL, French JD, Taylor MA, Bendele AM, Born WK, O'Brien RL (2007) Exacerbation of collagen-induced arthritis by oligoclonal, IL-17-producing gamma delta T cells. J Immunol 179:5576–5583CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ortega C, Fernandez AS, Carrillo JM, Romero P, Molina IJ, Moreno JC, Santamaria M (2009) IL-17-producing CD8+ T lymphocytes from psoriasis skin plaques are cytotoxic effector cells that secrete Th17-related cytokines. J Leukoc Biol 86:435–443CrossRefPubMedGoogle Scholar
  11. 11.
    Huber M, Heink S, Grothe H, Guralnik A, Reinhard K, Elflein K, Hunig T, Mittrucker HW, Brustle A, Kamradt T, Lohoff M (2009) A Th17-like developmental process leads to CD8(+) Tc17 cells with reduced cytotoxic activity. Eur J Immunol 39:1716–1725CrossRefPubMedGoogle Scholar
  12. 12.
    Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238CrossRefPubMedGoogle Scholar
  13. 13.
    Korn T, Bettelli E, Gao W, Awasthi A, Jager A, Strom TB, Oukka M, Kuchroo VK (2007) IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448:484–487CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Heink S, Yogev N, Garbers C, Herwerth M, Aly L, Gasperi C, Husterer V, Croxford AL, Moller-Hackbarth K, Bartsch HS, Sotlar K, Krebs S, Regen T, Blum H, Hemmer B, Misgeld T, Wunderlich TF, Hidalgo J, Oukka M, Rose-John S, Schmidt-Supprian M, Waisman A, Korn T (2017) Trans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic TH17 cells. Nat Immunol 18:74–85CrossRefPubMedGoogle Scholar
  15. 15.
    Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:1121–1133CrossRefPubMedGoogle Scholar
  16. 16.
    Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F (2007) Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 8:942–949CrossRefPubMedGoogle Scholar
  17. 17.
    Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ, Konkel JE, Ramos HL, Wei L, Davidson TS, Bouladoux N, Grainger JR, Chen Q, Kanno Y, Watford WT, Sun HW, Eberl G, Shevach EM, Belkaid Y, Cua DJ, Chen W, O'Shea JJ (2010) Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature 467:967–971CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mufazalov IA, Schelmbauer C, Regen T, Kuschmann J, Wanke F, Gabriel LA, Hauptmann J, Muller W, Pinteaux E, Kurschus FC, Waisman A (2017) IL-1 signaling is critical for expansion but not generation of autoreactive GM-CSF+ Th17 cells. EMBO J 36:102–115CrossRefPubMedGoogle Scholar
  19. 19.
    Chung Y, Chang SH, Martinez GJ, Yang XO, Nurieva R, Kang HS, Ma L, Watowich SS, Jetten AM, Tian Q, Dong C (2009) Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30:576–587CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kurschus FC, Moos S (2017) IL-17 for therapy. J Dermatol Sci 87:221–227CrossRefPubMedGoogle Scholar
  21. 21.
    Suto A, Kashiwakuma D, Kagami S, Hirose K, Watanabe N, Yokote K, Saito Y, Nakayama T, Grusby MJ, Iwamoto I, Nakajima H (2008) Development and characterization of IL-21-producing CD4+ T cells. J Exp Med 205:1369–1379CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Simonian PL, Wehrmann F, Roark CL, Born WK, O'Brien RL, Fontenot AP (2010) Gammadelta T cells protect against lung fibrosis via IL-22. J Exp Med 207:2239–2253CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kim JS, Smith-Garvin JE, Koretzky GA, Jordan MS (2011) The requirements for natural Th17 cell development are distinct from those of conventional Th17 cells. J Exp Med 208:2201–2207CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Yang XO, Chang SH, Park H, Nurieva R, Shah B, Acero L, Wang YH, Schluns KS, Broaddus RR, Zhu Z, Dong C (2008) Regulation of inflammatory responses by IL-17F. J Exp Med 205:1063–1075CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Esplugues E, Huber S, Gagliani N, Hauser AE, Town T, Wan YY, O'Connor W Jr, Rongvaux A, Van Rooijen N, Haberman AM, Iwakura Y, Kuchroo VK, Kolls JK, Bluestone JA, Herold KC, Flavell RA (2011) Control of TH17 cells occurs in the small intestine. Nature 475:514–518CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yang XO, Nurieva R, Martinez GJ, Kang HS, Chung Y, Pappu BP, Shah B, Chang SH, Schluns KS, Watowich SS, Feng XH, Jetten AM, Dong C (2008) Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29:44–56CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chang SH, Dong C (2009) IL-17F: regulation, signaling and function in inflammation. Cytokine 46:7–11CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Satoh-Takayama N, Vosshenrich CA, Lesjean-Pottier S, Sawa S, Lochner M, Rattis F, Mention JJ, Thiam K, Cerf-Bensussan N, Mandelboim O, Eberl G, Di Santo JP (2008) Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29:958–970CrossRefPubMedGoogle Scholar
  29. 29.
    Geremia A, Arancibia-Carcamo CV, Fleming MP, Rust N, Singh B, Mortensen NJ, Travis SP, Powrie F (2011) IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med 208:1127–1133CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Klose CS, Kiss EA, Schwierzeck V, Ebert K, Hoyler T, d'Hargues Y, Goppert N, Croxford AL, Waisman A, Tanriver Y, Diefenbach A (2013) A T-bet gradient controls the fate and function of CCR6-RORgammat+ innate lymphoid cells. Nature 494:261–265CrossRefPubMedGoogle Scholar
  31. 31.
    Kiss EA, Vonarbourg C, Kopfmann S, Hobeika E, Finke D, Esser C, Diefenbach A (2011) Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 334:1561–1565CrossRefPubMedGoogle Scholar
  32. 32.
    Lee Y, Awasthi A, Yosef N, Quintana FJ, Xiao S, Peters A, Wu C, Kleinewietfeld M, Kunder S, Hafler DA, Sobel RA, Regev A, Kuchroo VK (2012) Induction and molecular signature of pathogenic T(H)17 cells. Nat Immunol 13:991–999CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Becher B, Durell BG, Noelle RJ (2002) Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J Clin Invest 110:493–497CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kurschus FC (2015) T cell mediated pathogenesis in EAE: molecular mechanisms. Biom J 38:183–193Google Scholar
  35. 35.
    Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T, Zurawski S, Wiekowski M, Lira SA, Gorman D, Kastelein RA, Sedgwick JD (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–748CrossRefPubMedGoogle Scholar
  36. 36.
    Becher B, Durell BG, Noelle RJ (2003) IL-23 produced by CNS-resident cells controls T cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis. J Clin Invest 112:1186–1191CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sutton C, Brereton C, Keogh B, Mills KH, Lavelle EC (2006) A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 203:1685–1691CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kurschus FC, Croxford AL, Heinen AP, Wortge S, Ielo D, Waisman A (2010) Genetic proof for the transient nature of the Th17 phenotype. Eur J Immunol 40:3336–3346CrossRefPubMedGoogle Scholar
  39. 39.
    Wanke F, Moos S, Croxford AL, Heinen AP, Graf S, Kalt B, Tischner D, Zhang J, Christen I, Bruttger J, Yogev N, Tang Y, Zayoud M, Israel N, Karram K, Reissig S, Lacher SM, Reichhold C, Mufazalov IA, Ben-Nun A, Kuhlmann T, Wettschureck N, Sailer AW, Rajewsky K, Casola S, Waisman A, Kurschus FC (2017) EBI2 is highly expressed in multiple sclerosis lesions and promotes early CNS migration of encephalitogenic CD4 T cells. Cell Rep 18:1270–1284CrossRefPubMedGoogle Scholar
  40. 40.
    Hirota K, Duarte JH, Veldhoen M, Hornsby E, Li Y, Cua DJ, Ahlfors H, Wilhelm C, Tolaini M, Menzel U, Garefalaki A, Potocnik AJ, Stockinger B (2011) Fate mapping of IL-17-producing T cells in inflammatory responses. Nat Immunol 12:255–263CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lowes MA, Kikuchi T, Fuentes-Duculan J, Cardinale I, Zaba LC, Haider AS, Bowman EP, Krueger JG (2008) Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J Invest Dermatol 128:1207–1211CrossRefPubMedGoogle Scholar
  42. 42.
    Cai Y, Shen X, Ding C, Qi C, Li K, Li X, Jala VR, Zhang HG, Wang T, Zheng J, Yan J (2011) Pivotal role of dermal IL-17-producing gammadelta T cells in skin inflammation. Immunity 35:596–610CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    El Malki K, Karbach SH, Huppert J, Zayoud M, Reissig S, Schuler R, Nikolaev A, Karram K, Munzel T, Kuhlmann CR, Luhmann HJ, von Stebut E, Wortge S, Kurschus FC, Waisman A (2013) An alternative pathway of imiquimod-induced psoriasis-like skin inflammation in the absence of interleukin-17 receptor a signaling. J Invest Dermatol 133:441–451CrossRefPubMedGoogle Scholar
  44. 44.
    Waisman A (2012) To be 17 again—anti-interleukin-17 treatment for psoriasis. N Engl J Med 366:1251–1252CrossRefPubMedGoogle Scholar
  45. 45.
    Croxford AL, Karbach S, Kurschus FC, Wortge S, Nikolaev A, Yogev N, Klebow S, Schuler R, Reissig S, Piotrowski C, Brylla E, Bechmann I, Scheller J, Rose-John S, Wunderlich FT, Munzel T, von Stebut E, Waisman A (2014) IL-6 regulates neutrophil microabscess formation in IL-17A-driven psoriasiform lesions. J Invest Dermatol 134:728–735CrossRefPubMedGoogle Scholar
  46. 46.
    van der Fits L, Mourits S, Voerman JS, Kant M, Boon L, Laman JD, Cornelissen F, Mus AM, Florencia E, Prens EP, Lubberts E (2009) Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol 182:5836–5845CrossRefPubMedGoogle Scholar
  47. 47.
    Pantelyushin S, Haak S, Ingold B, Kulig P, Heppner FL, Navarini AA, Becher B (2012) Rorgammat+ innate lymphocytes and gammadelta T cells initiate psoriasiform plaque formation in mice. J Clin Invest 122:2252–2256CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Hartwig T, Pantelyushin S, Croxford AL, Kulig P, Becher B (2015) Dermal IL-17-producing gammadelta T cells establish long-lived memory in the skin. Eur J Immunol 45:3022–3033CrossRefPubMedGoogle Scholar
  49. 49.
    Cardona AE, Huang D, Sasse ME, Ransohoff RM (2006) Isolation of murine microglial cells for RNA analysis or flow cytometry. Nat Protoc 1:1947–1951CrossRefPubMedGoogle Scholar
  50. 50.
    Gronke K, Kofoed-Nielsen M, Diefenbach A (2017) Isolation and flow cytometry analysis of innate lymphoid cells from the intestinal lamina propria. Methods Mol Biol 1559:255–265CrossRefPubMedGoogle Scholar
  51. 51.
    Huppert J, Closhen D, Croxford A, White R, Kulig P, Pietrowski E, Bechmann I, Becher B, Luhmann HJ, Waisman A, Kuhlmann CR (2010) Cellular mechanisms of IL-17-induced blood-brain barrier disruption. FASEB J 24: 1023–1034. DOI fj.09–141978 [pii]Google Scholar
  52. 52.
    Reissig S, Hackenbruch C, Hovelmeyer N (2014) Isolation of T cells from the gut. Methods Mol Biol 1193:21–25CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Florian Wanke
    • 1
    • 2
  • Yilang Tang
    • 1
  • Konrad Gronke
    • 3
    • 4
  • Sabrina Klebow
    • 1
  • Sonja Moos
    • 1
  • Judith Hauptmann
    • 1
  • Arthi Shanmugavadivu
    • 1
  • Tommy Regen
    • 1
  • Ilgiz A. Mufazalov
    • 1
  • Lauren A. Gabriel
    • 1
  • Sonja Reißig
    • 1
  • Andreas Diefenbach
    • 3
    • 4
  • Florian C. Kurschus
    • 1
    • 5
  • Ari Waisman
    • 1
  1. 1.University Medical Center of the Johannes Gutenberg University MainzInstitute for Molecular MedicineMainzGermany
  2. 2.Immunology, Inflammation & Infectious Diseases (I3), Discovery and Translational AreaRoche Pharma Research & Early Development (pRED)BaselSwitzerland
  3. 3.Institute of Medical Microbiology and HygieneUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
  4. 4.Institute of MicrobiologyCharité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
  5. 5.Department of DermatologyHeidelberg University HospitalHeidelbergGermany

Personalised recommendations