Advertisement

Journal of Molecular Medicine

, Volume 96, Issue 6, pp 547–558 | Cite as

LRP16 prevents hepatocellular carcinoma progression through regulation of Wnt/β-catenin signaling

  • Lijuan Shao
  • Wei Jing
  • Lingxiong Wang
  • Fei Pan
  • Liangliang Wu
  • Lijun Zhang
  • Pan Yang
  • Minggen HuEmail author
  • Kexing FanEmail author
Original Article
  • 306 Downloads

Abstract

Elevated LRP16 expression is associated with poor clinical outcomes in multiple malignancies. We detected LRP16 expression in hepatocellular carcinoma (HCC) and found that it was downregulated in tumor samples and HCC cell lines. In a cohort of 80 HCC patients, high level of LRP16 expression in HCC tumors was associated with well differentiation, less lymph node metastasis, and good overall survival (OS). Overexpression of LRP16 in the HepG2 and MHCC-97L cell lines increased cell apoptosis, attenuated cell proliferation, migration, and invasion ability in vitro, and drastically diminished tumor growth and metastasis in vivo. Silencing LRP16 in HCC-LM3 and SMMC-7721 cell lines showed opposite results. Microarray evaluation of tumor cells overexpressing LRP16 revealed the effects on decreased activity in the Wnt signaling pathway. These results were confirmed by qRT-PCR and Western blots. Furthermore, inhibition of Wnt signaling decreased proliferation, migration, and invasion of HCC cell lines. Mechanism conducted showed that LRP16 overexpression could prevent β-catenin from entering the nucleus. Our study demonstrated that LRP16 suppresses tumor growth in HCC by modulating Wnt/β-catenin signaling.

Key messages

  • LRP16 was low expression in HCC tissue and cell lines.

  • Low expression of LRP16 in HCC was associated with poor prognosis.

  • LRP16 inhibits activation of the Wnt/β-catenin pathway in HCC.

  • LRP16 prevents β-catenin from entering the nucleus.

Keywords

Leukemia-related protein 16 Hepatocellular carcinoma Metastasis Wnt/β-catenin signaling 

Notes

Acknowledgements

We thank Zizheng Wang at the Hepatological Surgery Department of PLA for his analysis assistance.

Funding

This work was supported by grants from the Ministry of Science & Technology (“973” projects) (No. 2012CB917104) and the National Natural Science Foundation of China (No. 81341069; 81172853).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

109_2018_1639_MOESM1_ESM.docx (15 kb)
ESM 1 (DOCX 14.5 KB)
109_2018_1639_MOESM2_ESM.docx (14 kb)
ESM 2 (DOCX 13.6 KB)
109_2018_1639_MOESM3_ESM.docx (1 mb)
ESM 3 (DOCX 1 MB)
109_2018_1639_MOESM4_ESM.docx (1.3 mb)
ESM 4 (DOCX 1.33 MB)

References

  1. 1.
    Han WD, Yu L, Lou FD, Wang QS, Zhao Y, Shi ZJ, Jin HJ (2001) The application of RACE technique to clone the full-length cDNA of a novel leukemia associated gene LRP16. Zhongguo Shi Yan Xue Ye Xue Za Zhi 9(1):18–21PubMedGoogle Scholar
  2. 2.
    Li YZ, Zhao P, Han WD (2009) Clinicopathological significance of LRP16 protein in 336 gastric carcinoma patients. World J Gastroenterol 15(38):4833–4837CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Liao DX, Han WD, Zhao YL, Pu YD, Mu YM, Luo CH, Li XH (2006) Expression and clinical significance of LRP16 gene in human breast cancer. Chin J Cancer 25(7):866–870Google Scholar
  4. 4.
    Shao Y, Li X, Lu Y, Liu L, Zhao P (2015) Aberrant LRP16 protein expression in primary neuroendocrine lung tumors. Int J Clin Exp Pathol 8(6):6560–6565PubMedPubMedCentralGoogle Scholar
  5. 5.
    Xi HQ, Zhao P, Han WD (2010) Clinicopathological significance and prognostic value of LRP16 expression in colorectal carcinoma. World J Gastroenterol 16(13):1644–1648CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Han WD, Mu YM, Lu XC, Xu ZM, Li XJ, Yu L, Song HJ, Li M, Lu JM, Zhao YL et al (2003) Up-regulation of LRP16 mRNA by 17beta-estradiol through activation of estrogen receptor alpha (ERalpha), but not ERbeta, and promotion of human breast cancer MCF-7 cell proliferation: a preliminary report. Endocr Relat Cancer 10(2):217–224CrossRefPubMedGoogle Scholar
  7. 7.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108CrossRefPubMedGoogle Scholar
  8. 8.
    El-Serag HB (2012) Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142(6):1264–1273 e1261CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wang J, He XD, Yao N, Liang WJ, Zhang YC (2013) A meta-analysis of adjuvant therapy after potentially curative treatment for hepatocellular carcinoma. Can J Gastroenterol 27(6):351–363CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Privette Vinnedge LM, Benight NM, Wagh PK, Pease NA, Nashu MA, Serrano-Lopez J, Adams AK, Cancelas JA, Waltz SE, Wells SI (2015) The DEK oncogene promotes cellular proliferation through paracrine Wnt signaling in Ron receptor-positive breast cancers. Oncogene 34(18):2325–2336CrossRefPubMedGoogle Scholar
  11. 11.
    Tong X, Li L, Li X, Heng L, Zhong L, Su X, Rong R, Hu S, Liu W, Jia B et al (2014) SOX10, a novel HMG-box-containing tumor suppressor, inhibits growth and metastasis of digestive cancers by suppressing the Wnt/beta-catenin pathway. Oncotarget 5(21):10571–10583CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Fatima S, Lee NP, Tsang FH, Kolligs FT, Ng IO, Poon RT, Fan ST, Luk JM (2012) Dickkopf 4 (DKK4) acts on Wnt/beta-catenin pathway by influencing beta-catenin in hepatocellular carcinoma. Oncogene 31(38):4233–4244CrossRefPubMedGoogle Scholar
  13. 13.
    Stow JL (2004) ICAT is a multipotent inhibitor of beta-catenin. Focus on “role for ICAT in beta-catenin-dependent nuclear signaling and cadherin functions”. Am J Physiol Cell Physiol 286(4):C745–C746CrossRefPubMedGoogle Scholar
  14. 14.
    Tsutsui M, Iizuka N, Moribe T, Miura T, Kimura N, Tamatsukuri S, Ishitsuka H, Fujita Y, Hamamoto Y, Tsunedomi R et al (2010) Methylated cyclin D2 gene circulating in the blood as a prognosis predictor of hepatocellular carcinoma. Clin Chim Acta 411(7–8):516–520CrossRefPubMedGoogle Scholar
  15. 15.
    Kim SU, Park JH, Kim HS, Lee JM, Lee HG, Kim H, Choi SH, Baek S, Kim BK, Park JY et al (2015) Serum Dickkopf-1 as a biomarker for the diagnosis of hepatocellular carcinoma. Yonsei Med J 56(5):1296–1306CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Park J, Schlederer M, Schreiber M, Ice R, Merkel O, Bilban M, Hofbauer S, Kim S, Addison J, Zou J et al (2015) AF1q is a novel TCF7 co-factor which activates CD44 and promotes breast cancer metastasis. Oncotarget 6(24):20697–20710CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chen WY, Liu SY, Chang YS, Yin JJ, Yeh HL, Mouhieddine TH, Hadadeh O, Abou-Kheir W, Liu YN (2015) MicroRNA-34a regulates WNT/TCF7 signaling and inhibits bone metastasis in Ras-activated prostate cancer. Oncotarget 6(1):441–457PubMedGoogle Scholar
  18. 18.
    Hay E, Faucheu C, Suc-Royer I, Touitou R, Stiot V, Vayssiere B, Baron R, Roman-Roman S, Rawadi G (2005) Interaction between LRP5 and Frat1 mediates the activation of the Wnt canonical pathway. J Biol Chem 280(14):13616–13623CrossRefPubMedGoogle Scholar
  19. 19.
    Pennanen PT, Sarvilinna NS, Toimela T, Ylikomi TJ (2011) Inhibition of FOSL1 overexpression in antiestrogen-resistant MCF-7 cells decreases cell growth and increases vacuolization and cell death. Steroids 76(10–11):1063–1068CrossRefPubMedGoogle Scholar
  20. 20.
    van Amerongen R, Nawijn MC, Lambooij JP, Proost N, Jonkers J, Berns A (2010) Frat oncoproteins act at the crossroad of canonical and noncanonical Wnt-signaling pathways. Oncogene 29(1):93–104CrossRefPubMedGoogle Scholar
  21. 21.
    Wang R, Sun Q, Wang P, Liu M, Xiong S, Luo J, Huang H, Du Q, Geller DA, Cheng B (2016) Notch and Wnt/beta-catenin signaling pathway play important roles in activating liver cancer stem cells. Oncotarget 7(5):5754–5768PubMedGoogle Scholar
  22. 22.
    Teufel A, Marquardt JU, Galle PR (2013) Next generation sequencing of HCC from European and Asian HCC cohorts. Back to p53 and Wnt/beta-catenin. J Hepatol 58(3):622–624CrossRefPubMedGoogle Scholar
  23. 23.
    Monga SP (2015) Beta-catenin signaling and roles in liver homeostasis, injury, and tumorigenesis. Gastroenterology 148(7):1294–1310CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Meng Y, Wu Z, Yin X, Zhao Y, Chen M, Si Y, Yang J, Fu X, Han W (2009) Keratin 18 attenuates estrogen receptor alpha-mediated signaling by sequestering LRP16 in cytoplasm. BMC Cell Biol 10:96CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zhao YL, Han WD, Li Q, Mu YM, Lu XC, Yu L, Song HJ, Li X, Lu JM, Pan CY (2005) Mechanism of transcriptional regulation of LRP16 gene expression by 17-beta estradiol in MCF-7 human breast cancer cells. J Mol Endocrinol 34(1):77–89CrossRefPubMedGoogle Scholar
  26. 26.
    Han WD, Si YL, Zhao YL, Li Q, Wu ZQ, Hao HJ, Song HJ (2008) GC-rich promoter elements maximally confers estrogen-induced transactivation of LRP16 gene through ERalpha/Sp1 interaction in MCF-7 cells. J Steroid Biochem Mol Biol 109(1–2):47–56CrossRefPubMedGoogle Scholar
  27. 27.
    Han WD, Zhao YL, Meng YG, Zang L, Wu ZQ, Li Q, Si YL, Huang K, Ba JM, Morinaga H et al (2007) Estrogenically regulated LRP16 interacts with estrogen receptor alpha and enhances the receptor's transcriptional activity. Endocr Relat Cancer 14(3):741–753CrossRefPubMedGoogle Scholar
  28. 28.
    Wu Z, Li Y, Li X, Ti D, Zhao Y, Si Y, Mei Q, Zhao P, Fu X, Han W (2011) LRP16 integrates into NF-kappaB transcriptional complex and is required for its functional activation. PLoS One 6(3):e18157CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wu Z, Wang C, Bai M, Li X, Mei Q, Li X, Wang Y, Fu X, Luo G, Han W (2015) An LRP16-containing preassembly complex contributes to NF-kappaB activation induced by DNA double-strand breaks. Nucleic Acids Res 43(6):3167–3179CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Li X, Wu Z, An X, Mei Q, Bai M, Hanski L, Li X, Ahola T, Han W (2017) Blockade of the LRP16-PKR-NF-kappaB signaling axis sensitizes colorectal carcinoma cells to DNA-damaging cytotoxic therapy. eLife 6.  https://doi.org/10.7554/eLife.27301
  31. 31.
    Moravec M (2012) Colorectal cancer and canonical Wnt signalling pathway. Cas Lek Cesk 151(7):335–342PubMedGoogle Scholar
  32. 32.
    Mir R, Pradhan SJ, Patil P, Mulherkar R, Galande S (2016) Wnt/beta-catenin signaling regulated SATB1 promotes colorectal cancer tumorigenesis and progression. Oncogene 35(13):1679–1691CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang Y, Li T, Guo P, Kang J, Wei Q, Jia X, Zhao W, Huai W, Qiu Y, Sun L et al (2014) MiR-424-5p reversed epithelial-mesenchymal transition of anchorage-independent HCC cells by directly targeting ICAT and suppressed HCC progression. Sci Rep 4:6248CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Freeman J, Smith D, Latinkic B, Ewan K, Samuel L, Zollo M, Marino N, Tyas L, Jones N, Dale TC (2015) A functional connectome: regulation of Wnt/TCF-dependent transcription by pairs of pathway activators. Mol Cancer 14:206CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Pez F, Lopez A, Kim M, Wands JR, Caron de Fromentel C, Merle P (2013) Wnt signaling and hepatocarcinogenesis: molecular targets for the development of innovative anticancer drugs. J Hepatol 59(5):1107–1117CrossRefPubMedGoogle Scholar
  36. 36.
    Mohammed MK, Shao C, Wang J, Wei Q, Wang X, Collier Z, Tang S, Liu H, Zhang F, Huang J et al (2016) Wnt/beta-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis 3(1):11–40CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kim M, Suh YA, Oh JH, Lee BR, Kim J, Jang SJ (2016) KIF3A binds to beta-arrestin for suppressing Wnt/beta-catenin signalling independently of primary cilia in lung cancer. Sci Rep 6:32770CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wang Y, Bu F, Royer C, Serres S, Larkin JR, Soto MS, Sibson NR, Salter V, Fritzsche F, Turnquist C et al (2014) ASPP2 controls epithelial plasticity and inhibits metastasis through beta-catenin-dependent regulation of ZEB1. Nat Cell Biol 16(11):1092–1104CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Immunology, School of MedicineNankai UniversityTianjinPeople’s Republic of China
  2. 2.PLA General Hospital Cancer Center, PLA Postgraduate School of MedicineBeijingPeople’s Republic of China
  3. 3.International Joint Cancer InstituteThe Second Military Medical UniversityShanghaiPeople’s Republic of China
  4. 4.Department of General Surgery, Changhai HospitalThe Second Military Medical UniversityShanghaiPeople’s Republic of China
  5. 5.Department of Stomatologythe First Affiliated Hospital of Guangdong Pharmaceutical UniversityGuangzhouPeople’s Republic of China

Personalised recommendations