Journal of Molecular Medicine

, Volume 97, Issue 3, pp 397–407 | Cite as

Follicular helper T cell and memory B cell immunity in CHC patients

  • Yong Liu
  • Huifan Ji
  • Pingwei Zhao
  • Hongqing Yan
  • Yanjun Cai
  • Lei Yu
  • Xiaoli Hu
  • Xiguang Sun
  • Yanfang JiangEmail author
Original Article


Chronic hepatitis C (CHC) is associated with biological activity of T follicular helper (Tfh) cells and memory B cells (MBCs). However, the nature of Tfh cell subsets that are responsible for MBCs in CHC patients has not been evaluated. This study aimed to investigate Tfh and MBC immunity before and after direct-acting antiviral (DAA) therapy in patients with CHC. A total of 31 CHC patients and 15 healthy controls (HCs) were recruited. Individual patients were treated with sofosbuvir/ribavirin (SOF/RBV) or in combination with pegylated interferon alpha-2a (PEG-IFN-α-2a) for 12 weeks. Immunofluorescence revealed the frequency of ICOS+CD4+CXCR5+ active Tfh cells in liver tissue of CHC patients was higher than that of healthy control. Tfh and B cell co-culture experiments showed that Tfh2 cells from CHC patients have potential ability to induce B cell differentiation and IgG production. Flow cytometry showed that the frequencies of CD21CD27+IgD activated MBCs, ICOS+CD4+CXCR5+ activated Tfh cells, Tfh1 (IFN-γ+CD4+CXCR5+) cells, and Tfh2 (IL-4+CD4+CXCR5+) cells, but not of Tfh17 (IL-17+CD4+CXCR5+) cells, increased in CHC patients before and after DAA therapy. Collectively, ICOS+ Tfh, Tfh1, Tfh2 cells, and MBCs participated in the antiviral treatment process of SOF/RBV with or without PEG-IFN-α-2a in CHC patients, and their activity was further enhanced during the treatment.

Key messages

  • This study aimed to investigate Tfh cells and MBC immunity in CHC patients.

  • CD21CD27+IgD activated MBCs increased in CHC patients before and after treatment.

  • Tfh1 and Tfh2 cells increased in CHC patients before and after antiviral treatment.

  • Intrahepatic activated Tfh cells increased in CHC patients before treatment.

  • Tfh2 cells from CHC patients have a stronger ability to induce B cell differentiation.


Chronic hepatitis C T follicular helper cell Memory B cell Antiviral treatment Immune response 



The authors sincerely thank Ms. Yingbo Li and Ms. Rongjing Dang for their technical assistance.

Funding information

This work was supported by the National Natural Science Foundation of China (Nos. 30972610, 81273240, 91742107, and 81570002), Jilin Province Science and Technology Agency (Nos. 20190101022JH, 20160101037JC, 20170622009JC, 2017C021, 2017J039, SXGJXX2017-8), Norman Bethune Program of Jilin University (2012206), and The fund of the State Key Laboratory of Kidney Diseases in PLA General Hospital.

Compliance with ethical standards

Ethical standards

Written informed consent was obtained from each participant. The experimental protocol was established according to the guidelines of the Declaration of Helsinki and was approved by the Human Ethics Committee of the First Hospital of Jilin University (No. 2014-301, Jilin University, Changchun, China).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

109_2018_1735_MOESM1_ESM.pdf (242 kb)
ESM 1 (PDF 242 kb)


  1. 1.
    Lavanchy D (2011) Evolving epidemiology of hepatitis C virus. Clin Microbiol Infect 17:107–115CrossRefPubMedGoogle Scholar
  2. 2.
    Spaan M, Boonstra A, Janssen HLA (2012) Immunology of hepatitis C infection. Best Pract Res Clin Gastroenterol 26:1049–1061CrossRefGoogle Scholar
  3. 3.
    Fierro NA, Gonzalez-Aldaco K, Torres-Valadez R, Martinez-Lopez E, Roman S, Panduro A (2014) Immunologic, metabolic and genetic factors in hepatitis C virus infection. World J Gastroenterol 20:3443–3456CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cholongitas E, Papatheodoridis GV (2014) Sofosbuvir: a novel oral agent for chronic hepatitis C. Ann Gastroenterol 27:331–337PubMedPubMedCentralGoogle Scholar
  5. 5.
    Malaspina A, Moir S, Ho J, Wang W, Howell ML, O'Shea MA, Roby GA, Rehm CA, Mican JM, Chun TW, Fauci AS (2006) Appearance of immature/transitional B cells in HIV-infected individuals with advanced disease: correlation with increased IL-7. Proc Natl Acad Sci U S A 103:2262–2267CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Agematsu K, Hokibara S, Nagumo H, Komiyama A (2000) CD27: a memory B-cell marker. Immunol Today 21:204–206CrossRefPubMedGoogle Scholar
  7. 7.
    Morbach H, Eichhorn EM, Liese JG, Girschick HJ (2010) Reference values for B cell subpopulations from infancy to adulthood. Clin Exp Immunol 162:271–279CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ayieko C, Maue AC, Jura WG, Noland GS, Ayodo G, Rochford R, John CC (2013) Changes in B cell populations and merozoite surface protein-1-specific memory B cell responses after prolonged absence of detectable P. falciparum infection. PLoS One 8:e67230CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Thomas MA, Demberg T, Vargas-Inchaustegui DA, Xiao P, Tuero I, Venzon D, Weiss D, Treece J, Robert-Guroff M (2014) Rhesus macaque rectal and duodenal tissues exhibit B-cell sub-populations distinct from peripheral blood that continuously secrete antigen-specific IgA in short-term explant cultures. Vaccine 32:872–880CrossRefPubMedGoogle Scholar
  10. 10.
    Ma CS, Phan TG (2017) Here, there and everywhere: T follicular helper cells on the move. Immunology 152:382–387CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dong C, Juedes AE, Temann UA, Shresta S, Allison JP, Ruddle NH, Flavell RA (2001) ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409:97–101CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang X, Ing S, Fraser A, Chen M, Khan O, Zakem J, Davis W, Quinet R (2013) Follicular helper T cells: new insights into mechanisms of autoimmune diseases. Ochsner J 13:131–139PubMedPubMedCentralGoogle Scholar
  13. 13.
    King C, Tangye SG, Mackay CR (2008) T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu Rev Immunol 26:741–766CrossRefPubMedGoogle Scholar
  14. 14.
    Morita R, Schmitt N, Bentebibel SE, Ranganathan R, Bourdery L, Zurawski G, Foucat E, Dullaers M, Oh S, Sabzghabaei N, Lavecchio EM, Punaro M, Pascual V, Banchereau J, Ueno H (2011) Human blood CXCR5+CD4+ T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 34:108–121CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Schmitt N, Ueno H (2013) Blood Tfh cells come with colors. Immunity 39:629–630CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bentebibel SE, Lopez S, Obermoser G, Schmitt N, Mueller C, Harrod C, Flano E, Mejias A, Albrecht RA, Blankenship D, Xu H, Pascual V, Banchereau J, Garcia-Sastre A, Palucka AK, Ramilo O, Ueno H (2013) Induction of ICOS+CXCR3+CXCR5+ TH cells correlates with antibody responses to influenza vaccination. Sci Transl Med 5:176ra32CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Le Coz C, Joublin A, Pasquali JL, Korganow AS, Dumortier H, Monneaux F (2013) Circulating TFH subset distribution is strongly affected in lupus patients with an active disease. PLoS One 8:e75319CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Li XY, Wu ZB, Ding J, Zheng ZH, Li XY, Chen LN, Zhu P (2012) Role of the frequency of blood CD4(+) CXCR5(+) CCR6(+) T cells in autoimmunity in patients with Sjogren’s syndrome. Biochem Biophys Res Commun 422:238–244CrossRefPubMedGoogle Scholar
  19. 19.
    Tárnok A, Hambsch J, Chen R, Varro R (2003) Cytometric bead array to measure six cytokines in twenty-five microliters of serum. Clin Chem 49:1000–1002CrossRefPubMedGoogle Scholar
  20. 20.
    Wang L, Sun Y, Zhang Z, Jia Y, Zou Z, Ding J, Li Y, Xu X, Jin L, Yang T, Li Z, Sun Y, Zhang JY, Lv S, Chen L, Li B, Gershwin ME, Wang FS (2015) CXCR5+CD4+ T follicular helper cells participate in the pathogenesis of primary biliary cirrhosis. Hepatology 61:627–638CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Murakami J, Shimizu Y, Kashii Y, Kato T, Minemura M, Okada K, Nambu S, Takahara T, Higuchi K, Maeda Y, Kumada T, Watanabe A (1999) Functional B-cell response in intrahepatic lymphoid follicles in chronic hepatitis C. Hepatology 30:143–150CrossRefPubMedGoogle Scholar
  22. 22.
    Babusis D, Curry MP, Kirby B, Park Y, Murakami E, Wang T, Mathias A, Afdhal N, McHutchison JG, Ray AS (2018) Sofosbuvir and ribavirin liver pharmacokinetics in patients infected with hepatitis C virus. Antimicrob Agents Chemother 62:e02587-17CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Spaan M, Kreefft K, de Graav GN, Brouwer WP, de Knegt RJ, ten Kate FJ, Baan CC, Vanwolleghem T, Janssen HL, Boonstra A (2015) CD4+CXCR5+T-cells in chronic HCV infection produce less IL-21, yet are efficient at supporting B cell responses. J Hepatol 62:303–310CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang M, Zhang L, Li H, Chen Z, Luo A, Liu B, Chen M, Peng M, Ren H, Hu P (2016) Circulating T follicular helper cells are associated with rapid virological response in chronic hepatitis C patients undergoing peginterferon therapy. Int Immunopharmacol 34:235–243CrossRefPubMedGoogle Scholar
  25. 25.
    Feng J, Hu X, Guo H, Sun X, Wang J, Xu L, Jiang Z, Xu B, Niu J, Jiang Y (2012) Patients with chronic hepatitis C express a high percentage of CD4+CXCR5+ T follicular helper cells. J Gastroenterol 47:1048–1056CrossRefPubMedGoogle Scholar
  26. 26.
    Zhuo Y, Zhang YF, Wu HJ, Qin L, Wang YP, Liu AM, Wang XH (2017) Interaction between Galectin-9/TIM-3 pathway and follicular helper CD4+ T cells contributes to viral persistence in chronic hepatitis C. Biomed Pharmacother 94:386–393CrossRefPubMedGoogle Scholar
  27. 27.
    Tangye SG, Liu YJ, Aversa G, Phillips JH, de Vries JE (1998) Identification of functional human splenic memory B cells by expression of CD148 and CD27. J Exp Med 188:1691–1703CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Mizuochi T, Ito M, Takai K, Yamaguchi K (2011) Peripheral blood memory B cells are resistant to apoptosis in chronic hepatitis C patients. Virus Res 155:349–351CrossRefPubMedGoogle Scholar
  29. 29.
    Racanelli V, Frassanito MA, Leone P, Galiano M, De Re V, Silvestris F, Dammacco F (2006) Antibody production and in vitro behavior of CD27-defined B-cell subsets: persistent hepatitis C virus infection changes the rules. J Virol 80:3923–3934CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mizuochi T, Ito M, Saito K, Kasai M, Kunimura T, Morohoshi T, Momose H, Hamaguchi I, Takai K, Iino S, Suzuki M, Mochida S, Ikebuchi K, Yamaguchi K (2010) Possible recruitment of peripheral blood CXCR3+ CD27+ CD19+ B cells to the liver of chronic hepatitis C patients. J Interf Cytokine Res 30:243–252CrossRefGoogle Scholar
  31. 31.
    Shetty S, Bruns T, Weston CJ, Stamataki Z, Oo YH, Long HM, Reynolds GM, Pratt G, Moss P, Jalkanen S, Hubscher SG, Lalor PF, Adams DH (2012) Recruitment mechanisms of primary and malignant B cells to the human liver. Hepatology 56:1521–1531CrossRefPubMedGoogle Scholar
  32. 32.
    Sugalski JM, Rodriguez B, Moir S, Anthony DD (2010) Peripheral blood B cell subset skewing is associated with altered cell cycling and intrinsic resistance to apoptosis and reflects a state of immune activation in chronic hepatitis C virus infection. J Immunol 185:3019–3027CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Raziorrouh B, Sacher K, Tawar RG, Emmerich F, Neumann-Haefelin C, Baumert TF, Thimme R, Boettler T (2016) Virus-specific CD4+ T cells have functional and phenotypic characteristics of follicular T-helper cells in patients with acute and chronic HCV infections. Gastroenterology 150:696–706.e3CrossRefPubMedGoogle Scholar
  34. 34.
    Comarmond C, Garrido M, Pol S, Desbois AC, Costopoulos M, Le Garff-Tavernier M, Si Ahmed SN, Alric L, Fontaine H, Bellier B, Maciejewski A, Rosenzwajg M, Klatzmann D, Musset L, Poynard T, Cacoub P, Saadoun D (2017) Direct-acting antiviral therapy restores immune tolerance to patients with hepatitis C virus-induced cryoglobulinemia vasculitis. Gastroenterology 152:2052–2062.e2CrossRefPubMedGoogle Scholar
  35. 35.
    Che Y, Qiu J, Jin T, Yin F, Li M, Jiang Y (2016) Circulating memory T follicular helper subsets, Tfh2 and Tfh17, participate in the pathogenesis of Guillain-Barré syndrome. Sci Rep 6:20963CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sahoo A, Wali S, Nurieva R (2016) T helper 2 and T follicular helper cells: regulation and function of interleukin-4. Cytokine Growth Factor Rev 30:29–37CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Schoenborn JR, Wilson CB (2007) Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol 96:41–101CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yong Liu
    • 1
  • Huifan Ji
    • 2
  • Pingwei Zhao
    • 1
  • Hongqing Yan
    • 2
  • Yanjun Cai
    • 2
  • Lei Yu
    • 3
  • Xiaoli Hu
    • 4
  • Xiguang Sun
    • 1
  • Yanfang Jiang
    • 1
    • 5
    Email author
  1. 1.Genetic Diagnosis CenterThe First Hospital of Jilin UniversityChangchunChina
  2. 2.Department of HepatologyThe First Hospital of Jilin UniversityChangchunChina
  3. 3.Department of Infectious DiseaseThe Fourth Hospital of Harbin Medical UniversityHarbinChina
  4. 4.Department of Infectious DiseaseHeilongjiang Provincial HospitalHarbinChina
  5. 5.Key Laboratory of Zoonosis Research, Ministry of EducationThe First Hospital of Jilin UniversityChangchunChina

Personalised recommendations