Skip to main content

Advertisement

Log in

An endothelial cell line infected by Kaposi’s sarcoma–associated herpes virus (KSHV) allows the investigation of Kaposi’s sarcoma and the validation of novel viral inhibitors in vitro and in vivo

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Kaposi’s sarcoma–associated herpesvirus (KSHV) is the etiological agent of Kaposi’s sarcoma (KS), a tumor of endothelial origin predominantly affecting immunosuppressed individuals. Up to date, vaccines and targeted therapies are not available. Screening and identification of anti-viral compounds are compromised by the lack of scalable cell culture systems reflecting properties of virus-transformed cells in patients. Further, the strict specificity of the virus for humans limits the development of in vivo models. In this study, we exploited a conditionally immortalized human endothelial cell line for establishment of in vitro 2D and 3D KSHV latency models and the generation of KS-like xenograft tumors in mice. Importantly, the invasive properties and tumor formation could be completely reverted by purging KSHV from the cells, confirming that tumor formation is dependent on the continued presence of KSHV, rather than being a consequence of irreversible transformation of the infected cells. Upon testing a library of 260 natural metabolites, we selected the compounds that induced viral loss or reduced the invasiveness of infected cells in 2D and 3D endothelial cell culture systems. The efficacy of selected compounds against KSHV-induced tumor formation was verified in the xenograft model. Together, this study shows that the combined use of anti-viral and anti-tumor assays based on the same cell line is predictive for tumor reduction in vivo and therefore allows faithful selection of novel drug candidates against Kaposi’s sarcoma.

Key messages

  • Novel 2D, 3D, and xenograft mouse models mimic the consequences of KSHV infection.

  • KSHV-induced tumorigenesis can be reverted upon purging the cells from the virus.

  • A 3D invasiveness assay is predictive for tumor reduction in vivo.

  • Chondramid B, epothilone B, and pretubulysin D diminish KS-like lesions in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. zur Hausen H (2001) Oncogenic DNA viruses. Oncogene 20:7820–7823

    Article  PubMed  CAS  Google Scholar 

  2. E a M, Cesarman E, Boshoff C (2010) Kaposi’s sarcoma and its associated herpesvirus. Nat Rev Cancer 10:707–719

    Article  CAS  Google Scholar 

  3. Raeisi D, Madani SH, Zare ME (2013) Kaposi’ s sarcoma after kidney transplantation: a 21-years experience. 7:

  4. Union for International Cancer Control (2014) Review of cancer medicines on the WHO List of Essential Medicines: Kaposi’s sarcoma

  5. Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, Bruns CJ, Zuelke C, Farkas S, Anthuber M, Jauch KW, Geissler EK (2002) Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 8:128–135

    Article  PubMed  CAS  Google Scholar 

  6. Chang HH, Ganem D (2013) A unique herpesviral transcriptional program in KSHV-infected lymphatic endothelial cells leads to mTORC1 activation and rapamycin sensitivity. Cell Host Microbe 13:429–440

  7. Roy D, Sin SH, Lucas A, Venkataramanan R, Wang L, Eason A, Chavakula V, Hilton IB, Tamburro KM, Damania B, Dittmer DP (2013) MTOR inhibitors block Kaposi sarcoma growth by inhibiting essential autocrine growth factors and tumor angiogenesis. Cancer Res 73:2235–2246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Stallone G, Schena A, Infante B, di Paolo S, Loverre A, Maggio G, Ranieri E, Gesualdo L, Schena FP, Grandaliano G (2005) Sirolimus for Kaposi’s sarcoma in renal-transplant recipients. N Engl J Med 352:1317–1323

    Article  PubMed  CAS  Google Scholar 

  9. Alkharsah KR, Singh VV, Bosco R, Santag S, Grundhoff A, Konrad A, Sturzl M, Wirth D, Dittrich-Breiholz O, Kracht M, Schulz TF (2011) Deletion of Kaposi’s sarcoma-associated herpesvirus FLICE inhibitory protein, vFLIP, from the viral genome compromises the activation of STAT1-responsive cellular genes and spindle cell formation in endothelial cells. J Virol 85:10375–10388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cheng F, Pekkonen P, Laurinavicius S, Sugiyama N, Henderson S, Günther T, Rantanen V, Kaivanto E, Aavikko M, Sarek G, Hautaniemi S, Biberfeld P, Aaltonen L, Grundhoff A, Boshoff C, Alitalo K, Lehti K, Ojala PM (2011) KSHV-initiated notch activation leads to membrane-type-1 matrix metalloproteinase-dependent lymphatic endothelial-to-mesenchymal transition. Cell Host Microbe 10:577–590

    Article  PubMed  CAS  Google Scholar 

  11. Dittmer DP (2003) Transcription profile of Kaposi’s sarcoma-associated herpesvirus in primary Kaposi’s sarcoma lesions as determined by real-time PCR arrays. Cancer Res 63:2010–2015

    PubMed  CAS  Google Scholar 

  12. Hosseinipour MC, Sweet KM, Xiong J, Namarika D, Mwafongo A, Nyirenda M, Chiwoko L, Kamwendo D, Hoffman I, Lee J, Phiri S, Vahrson W, Damania B, Dittmer DP (2014) Viral profiling identifies multiple subtypes of Kaposi’s sarcoma. MBio 5:e01633–e01614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Coen N, Duraffour S, Snoeck R, Andrei G (2014) KSHV targeted therapy: An update on inhibitors of viral lytic replication. Viruses 6:4731–4759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Virgin HW 4th, Latreille P, Wamsley P et al (1997) Complete sequence and genomic analysis of murine gammaherpesvirus 68. J Virol 71:5894–5904

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Barton E, Mandal P, Speck SH (2011) Pathogenesis and host control of gammaherpesviruses: lessons from the mouse. Annu Rev Immunol 29:351–397

    Article  PubMed  CAS  Google Scholar 

  16. Dong S, Forrest JC, Liang X (2017) Murine gammaherpesvirus 68: a small animal model for gammaherpesvirus-associated diseases. Adv Exp Med Biol 1018:225–236

    Article  PubMed  CAS  Google Scholar 

  17. May T, Butueva M, Bantner S, Markusic D, Seppen J, MacLeod RAF, Weich H, Hauser H, Wirth D (2010) Synthetic gene regulation circuits for control of cell expansion. Tissue Eng Part A 16:441–452

    Article  PubMed  CAS  Google Scholar 

  18. Lipps C, Badar M, Butueva M, Dubich T, Singh VV, Rau S, Weber A, Kracht M, Köster M, May T, Schulz TF, Hauser H, Wirth D (2017) Proliferation status defines functional properties of endothelial cells. Cell Mol Life Sci 74:1319–1333

    Article  PubMed  CAS  Google Scholar 

  19. Boivin G, Gaudreau A, Routy JP (2000) Evaluation of the human herpesvirus 8 DNA load in blood and Kaposi’s sarcoma skin lesions from AIDS patients on highly active antiretroviral therapy. AIDS 14:1907–1910

    Article  PubMed  CAS  Google Scholar 

  20. Vieira J, O’Hearn PM (2004) Use of the red fluorescent protein as a marker of Kaposi’s sarcoma-associated herpesvirus lytic gene expression. Virology 325:225–240

    Article  PubMed  CAS  Google Scholar 

  21. Ramirez-Solis R, Rivera-Perez J, Wallace JD et al (1992) Genomic DNA microextraction: a method to screen numerous samples. Anal Biochem 201:331–335

    Article  PubMed  CAS  Google Scholar 

  22. Shao Z, Friedlander M, Hurst CG, Cui Z, Pei DT, Evans LP, Juan AM, Tahir H, Duhamel F, Chen J, Sapieha P, Chemtob S, Joyal JS, Smith LEH (2013) Choroid sprouting assay: an ex vivo model of microvascular angiogenesis. PLoS One 8:e69552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ullrich A, Chai Y, Pistorius D, Elnakady YA, Herrmann JE, Weissman KJ, Kazmaier U, Müller R (2009) Pretubulysin, a potent and chemically accessible tubulysin precursor from Angiococcus disciformis. Angew Chem Int Ed Engl 48:4422–4425

    Article  PubMed  CAS  Google Scholar 

  24. Kati S, Tsao EH, Gunther T, Weidner-Glunde M, Rothamel T, Grundhoff A, Kellam P, Schulz TF (2013) Activation of the B cell antigen receptor triggers reactivation of latent Kaposi’s sarcoma-associated herpesvirus in B cells. J Virol 87:8004–8016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kati S, Hage E, Mynarek M, Ganzenmueller T, Indenbirken D, Grundhoff A, Schulz TF (2015) Generation of high-titre virus stocks using BrK.219, a B-cell line infected stably with recombinant Kaposi’s sarcoma-associated herpesvirus. J Virol Methods 217:79–86

    Article  PubMed  CAS  Google Scholar 

  26. Wang L, Damania B (2008) Kaposi’s sarcoma-associated herpesvirus confers a survival advantage to endothelial cells. Cancer Res 68:4640–4648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Appleton MA, Attanoos RL, Jasani B (1996) Thrombomodulin as a marker of vascular and lymphatic tumours. Histopathology 29:153–157

    Article  PubMed  CAS  Google Scholar 

  28. Kang H, Lieberman PM (2011) Mechanism of glycyrrhizic acid inhibition of Kaposi’s sarcoma-associated herpesvirus: disruption of CTCF-cohesin-mediated RNA polymerase II pausing and sister chromatid cohesion. J Virol 85:11159–11169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. El Assal R, Gurkan UA, Chen P et al (2016) 3-D microwell array system for culturing virus infected tumor cells. Sci Rep 6:39144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Herrmann J, Fayad AA, Muller R (2017) Natural products from Myxobacteria: novel metabolites and bioactivities. Nat Prod Rep 34:135–160

    Article  PubMed  CAS  Google Scholar 

  31. Mariggiò G, Koch S, Schulz TF (2017) Kaposi sarcoma herpesvirus pathogenesis. Philos Trans R Soc B Biol Sci 372:20160275

    Article  CAS  Google Scholar 

  32. Haq I-U, Dalla Pria A, Papanastasopoulos P, Stegmann K, Bradshaw D, Nelson M, Bower M (2016) The clinical application of plasma Kaposi sarcoma herpesvirus viral load as a tumour biomarker: results from 704 patients. HIV Med 17:56–61

    Article  PubMed  CAS  Google Scholar 

  33. Mutlu AD, Cavallin LE, Vincent L et al (2007) In vivo growth-restricted and reversible malignancy induced by Human Herpesvirus-8/ KSHV: a cell and animal model of virally induced Kaposi’s sarcoma. Cancer Cell 11:245–258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Cloutier N, van Eyll O, Janelle M-E, Lefort S, Gao SJ, Flamand L (2008) Increased tumorigenicity of cells carrying recombinant human herpesvirus 8. Arch Virol 153:93–103

    Article  PubMed  CAS  Google Scholar 

  35. Zhang J, Zhu L, Lu X, Feldman ER, Keyes LR, Wang Y, Fan H, Feng H, Xia Z, Sun J, Jiang T, Gao SJ, Tibbetts SA, Feng P (2015) Recombinant murine gamma herpesvirus 68 carrying KSHV G protein-coupled receptor induces angiogenic lesions in mice. PLoS Pathog 11:e1005001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. An F, Folarin HM, Compitello N et al (2006) Long-term-infected telomerase-immortalized endothelial cells: a model for Kaposi’s sarcoma-associated herpesvirus latency in vitro and in vivo. J Virol 80:4833–4846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Blacher S, Erpicum C, Lenoir B, Paupert J, Moraes G, Ormenese S, Bullinger E, Noel A (2014) Cell invasion in the spheroid sprouting assay: a spatial organisation analysis adaptable to cell behaviour. PLoS One 9:e97019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Qin Z, Dai L, Toole B, Robertson E, Parsons C (2011) Regulation of Nm23-H1 and cell invasiveness by Kaposi’s sarcoma-associated herpesvirus. J Virol 85:3596–3606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Dai L, Qiao J, Nguyen D, Struckhoff AP, Doyle L, Bonstaff K, del Valle L, Parsons C, Toole BP, Renne R, Qin Z (2016) Role of heme oxygenase-1 in the pathogenesis and tumorigenicity of Kaposi’s sarcoma-associated herpesvirus. Oncotarget 7:10459–10471

    PubMed  PubMed Central  Google Scholar 

  40. Liu R, Gong M, Li X, Zhou Y, Gao W, Tulpule A, Chaudhary PM, Jung J, Gill PS (2010) Induction, regulation, and biologic function of Axl receptor tyrosine kinase in Kaposi sarcoma. Blood 116:297–305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Jones T, Ramos da Silva S, Bedolla R, Ye F, Zhou F, Gao S (2014) Viral cyclin promotes KSHV-induced cellular transformation and tumorigenesis by overriding contact inhibition. Cell Cycle 13:845–858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Aoki Y, Jaffe ES, Chang Y, Jones K, Teruya-Feldstein J, Moore PS, Tosato G (1999) Angiogenesis and hematopoiesis induced by Kaposi’s sarcoma-associated herpesvirus-encoded interleukin-6. Blood 93:4034–4043

    PubMed  CAS  Google Scholar 

  43. Dong X, Cheng A, Zou Z, Yang YS, Sumpter RM Jr, Huang CL, Bhagat G, Virgin HW, Lira SA, Levine B (2016) Endolysosomal trafficking of viral G protein-coupled receptor functions in innate immunity and control of viral oncogenesis. Proc Natl Acad Sci 113:2994–2999

    Article  PubMed  CAS  Google Scholar 

  44. Jensen KK, Manfra DJ, Grisotto MG et al (2005) The human herpes virus 8-encoded chemokine receptor is required for angioproliferation in a murine model of Kaposi’s sarcoma. J Immunol 174:3686 LP–3683694

    Article  Google Scholar 

  45. Grisotto MG, Garin A, Martin AP, Jensen KK, Chan P, Sealfon SC, Lira SA (2006) The human herpesvirus 8 chemokine receptor vGPCR triggers autonomous proliferation of endothelial cells. J Clin Invest 116:1264–1273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Prakash O, Tang Z-Y, Peng X et al (2002) Tumorigenesis and aberrant signaling in transgenic mice expressing the human herpesvirus-8 K1 gene. J Natl Cancer Inst 94:926–935

    Article  PubMed  CAS  Google Scholar 

  47. Bala K, Bosco R, Gramolelli S, Haas DA, Kati S, Pietrek M, Hävemeier A, Yakushko Y, Singh VV, Dittrich-Breiholz O, Kracht M, Schulz TF (2012) Kaposi’s sarcoma herpesvirus K15 protein contributes to virus-induced angiogenesis by recruiting PLCγ1 and activating NFAT1-dependent RCAN1 expression. PLoS Pathog 8:e1002927

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gramolelli S, Weidner-Glunde M, Abere B, Viejo-Borbolla A, Bala K, Rückert J, Kremmer E, Schulz TF (2015) Inhibiting the recruitment of PLCγ1 to Kaposi’s sarcoma herpesvirus K15 protein reduces the invasiveness and angiogenesis of infected endothelial cells. PLoS Pathog 11:e1005105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Braig S, Wiedmann RM, Liebl J, Singer M, Kubisch R, Schreiner L, Abhari BA, Wagner E, Kazmaier U, Fulda S, Vollmar AM (2014) Pretubulysin: a new option for the treatment of metastatic cancer. Cell Death Dis 5:e1001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. O’Reilly T, McSheehy PMJ, Wenger F et al (2005) Patupilone (epothilone B, EPO906) inhibits growth and metastasis of experimental prostate tumors in vivo. Prostate 65:231–240

    Article  PubMed  CAS  Google Scholar 

  51. Menhofer MH, Bartel D, Liebl J, Kubisch R, Busse J, Wagner E, Müller R, Vollmar AM, Zahler S (2014) In vitro and in vivo characterization of the actin polymerizing compound chondramide as an angiogenic inhibitor. Cardiovasc Res 104:303–314

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

T.D. acknowledges the support by the HZI Grad School. Further, we thank the central animal facility (TEE) at HZI for the excellent support.

Financial support

The work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) via the Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy) and the SFB900 (Chronic Infection).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmar Wirth.

Ethics declarations

Animal experiments were performed in accordance with the ethical laws and were approved by the local authorities (permission number 33.19-42502-04-17/2480).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as potential conflict of interest. Dagmar Wirth and Hansjörg Hauser (together with Tobias May) have filed a patent concerning the technology for establishment of conditionally immortalized cell lines (PCT/EP2009/004854).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PPTX 914 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubich, T., Lieske, A., Santag, S. et al. An endothelial cell line infected by Kaposi’s sarcoma–associated herpes virus (KSHV) allows the investigation of Kaposi’s sarcoma and the validation of novel viral inhibitors in vitro and in vivo. J Mol Med 97, 311–324 (2019). https://doi.org/10.1007/s00109-018-01733-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-018-01733-1

Keywords

Navigation