Advertisement

Journal of Molecular Medicine

, Volume 96, Issue 2, pp 111–117 | Cite as

Using gene expression data to direct breast cancer therapy: evidence from a preclinical trial

  • Shams Reaz
  • Deimante Tamkus
  • Eran R. Andrechek
Review

Abstract

The heterogeneity both within and between breast cancers presents a significant clinical challenge for both diagnosis and therapy. This heterogeneity is present at all levels of analysis in breast cancer, ranging from genomic to metabolomic. A function of this heterogeneity is that numerous signaling networks are activated, and while treatment of one arm may be initially effective, this allows the tumor to be poised to evolve a resistance mechanism. Here we review the classification of breast cancers and discuss therapy of hormone positive, HER2 positive, and triple negative breast cancers. Model systems for breast cancer are examined allowing for a preclinical trial using a personalized medicine approach to be tested. This preclinical trial was based solely on cell signaling pathway activation and effectively and specifically blocked tumor growth in a preclinical model system.

Keywords

Breast cancer Mouse models Heterogeneity Genomics Signaling 

Notes

Funding information

This work was supported with NIH R01CA160514 and Worldwide Cancer Research WCR - 14-1153 to E.R.A.

References

  1. 1.
    Fidler IJ, Hart IR (1982) Biological diversity in metastatic neoplasms: origins and implications. Science 217(4564):998–1003CrossRefPubMedGoogle Scholar
  2. 2.
    Network TCGA (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70CrossRefGoogle Scholar
  3. 3.
    Heppner GH (1984) Tumor heterogeneity. Cancer Res 44(6):2259–2265PubMedGoogle Scholar
  4. 4.
    Hu Z, Fan C, DS O, Marron JS, He X, Qaqish BF et al (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7(1):96CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Perou CM, Jeffrey SS, van de Rijn M, Rees CA, Eisen MB, Ross DT, Pergamenschikov A, Williams CF, Zhu SX, Lee JCF et al (1999) Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci U S A 96(16):9212–9217CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752CrossRefPubMedGoogle Scholar
  7. 7.
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98(19):10869–10874CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100(14):8418–8423CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Herschkowitz JI, Zhao W, Zhang M, Usary J, Murrow G, Edwards D et al (2011) Comparative oncogenomics identifies breast tumors enriched in functional tumor-initiating cells. Proc Natl Acad Sci U S AGoogle Scholar
  10. 10.
    Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X, Perou CM (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12(5):R68CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, Martincorena I, Alexandrov LB, Martin S, Wedge DC et al (2016) Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534(7605):47–54CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318(5853):1108–1113CrossRefPubMedGoogle Scholar
  13. 13.
    Gatza ML, Lucas JE, Barry WT, Kim JW, Wang Q, Crawford MD et al (2010) A pathway-based classification of human breast cancer. Proc Natl Acad Sci U S A 107(15):6994–6999CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA et al (2015) Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res 21(7):1688–1698CrossRefPubMedGoogle Scholar
  15. 15.
    Tang P, Tse GM (2016) Immunohistochemical surrogates for molecular classification of breast carcinoma: a 2015 update. Arch Pathol Lab Med 140(8):806–814CrossRefPubMedGoogle Scholar
  16. 16.
    Ades F, Zardavas D, Bozovic-Spasojevic I, Pugliano L, Fumagalli D, de Azambuja E, Viale G, Sotiriou C, Piccart M (2014) Luminal B breast cancer: molecular characterization, clinical management, and future perspectives. J Clin Oncol 32(25):2794–2803CrossRefPubMedGoogle Scholar
  17. 17.
    Robinson DR, YM W, Vats P, Su F, Lonigro RJ, Cao X et al (2013) Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet 45(12):1446–1451CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Finn RS, Crown JP, Lang I, Boer K, Bondarenko IM, Kulyk SO, Ettl J, Patel R, Pinter T, Schmidt M et al (2015) The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol 16(1):25–35CrossRefPubMedGoogle Scholar
  19. 19.
    Hortobagyi GN, Stemmer SM, Burris HA, Yap YS, Sonke GS, Paluch-Shimon S, Campone M, Blackwell KL, André F, Winer EP et al (2016) Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N Engl J Med 375(18):1738–1748CrossRefPubMedGoogle Scholar
  20. 20.
    Baselga J, Campone M, Piccart M, Burris HA 3rd, Rugo HS, Sahmoud T et al (2012) Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366(6):520–529CrossRefPubMedGoogle Scholar
  21. 21.
    Finn RS, Martin M, Rugo HS, Jones S, Im SA, Gelmon K, Harbeck N, Lipatov ON, Walshe JM, Moulder S et al (2016) Palbociclib and letrozole in advanced breast cancer. N Engl J Med 375(20):1925–1936CrossRefPubMedGoogle Scholar
  22. 22.
    Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182CrossRefPubMedGoogle Scholar
  23. 23.
    Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P (1988) Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54(1):105–115CrossRefPubMedGoogle Scholar
  24. 24.
    Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M, Novotny WF, Burchmore M (et al., 2002) Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20(3):719–726Google Scholar
  25. 25.
    Moja L, Tagliabue L, Balduzzi S, Parmelli E, Pistotti V, Guarneri V et al (2012) Trastuzumab containing regimens for early breast cancer. Cochrane Database Syst Rev 4:CD006243Google Scholar
  26. 26.
    Gianni L, Eiermann W, Semiglazov V, Lluch A, Tjulandin S, Zambetti M, Moliterni A, Vazquez F, Byakhov MJ, Lichinitser M et al (2014) Neoadjuvant and adjuvant trastuzumab in patients with HER2-positive locally advanced breast cancer (NOAH): follow-up of a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet Oncol 15(6):640–647CrossRefPubMedGoogle Scholar
  27. 27.
    Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, Mackey J, Glaspy J, Chan A, Pawlicki M et al (2011) Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med 365(14):1273–1283CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Adams CW, Allison DE, Flagella K, Presta L, Clarke J, Dybdal N, McKeever K, Sliwkowski MX (2006) Humanization of a recombinant monoclonal antibody to produce a therapeutic HER dimerization inhibitor, pertuzumab. Cancer Immunol Immunother 55(6):717–727CrossRefPubMedGoogle Scholar
  29. 29.
    Loibl S, Jackisch C, Schneeweiss A, Schmatloch S, Aktas B, Denkert C, Wiebringhaus H, Kümmel S, Warm M, Paepke S et al (2017) Dual HER2-blockade with pertuzumab and trastuzumab in HER2-positive early breast cancer: a subanalysis of data from the randomized phase III GeparSepto trial. Ann Oncol 28(3):497–504PubMedGoogle Scholar
  30. 30.
    Joensuu H (2017) Escalating and de-escalating treatment in HER2-positive early breast cancer. Cancer Treat Rev 52:1–11CrossRefPubMedGoogle Scholar
  31. 31.
    Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13(15 Pt 1):4429–4434CrossRefPubMedGoogle Scholar
  32. 32.
    Tischkowitz M, Brunet JS, Begin LR, Huntsman DG, Cheang MC, Akslen LA et al (2007) Use of immunohistochemical markers can refine prognosis in triple negative breast cancer. BMC Cancer 7(1):134CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gonzalez-Angulo AM, Timms KM, Liu S, Chen H, Litton JK, Potter J, Lanchbury JS, Stemke-Hale K, Hennessy BT, Arun BK et al (2011) Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancer. Clin Cancer Res 17(5):1082–1089CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, Friedlander M, Arun B, Loman N, Schmutzler RK et al (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376(9737):235–244CrossRefPubMedGoogle Scholar
  35. 35.
    Robson M, Goessl C, Domchek S (2017) Olaparib for metastatic germline BRCA-mutated breast cancer. N Engl J Med 377(18):1792–1793CrossRefPubMedGoogle Scholar
  36. 36.
    Adams S, Gray RJ, Demaria S, Goldstein L, Perez EA, Shulman LN, Martino S, Wang M, Jones VE, Saphner TJ et al (2014) Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol 32(27):2959–2966CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Barton VN, D’Amato NC, Gordon MA, Lind HT, Spoelstra NS, Babbs BL, Heinz RE, Elias A, Jedlicka P, Jacobsen BM et al (2015) Multiple molecular subtypes of triple-negative breast cancer critically rely on androgen receptor and respond to enzalutamide in vivo. Mol Cancer Ther 14(3):769–778CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J, Hartwell K, Onder TT, Gupta PB, Evans KW et al (2010) Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci U S A 107(35):15449–15454CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Stewart TA, Pattengale PK, Leder P (1984) Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 38(3):627–637CrossRefPubMedGoogle Scholar
  40. 40.
    Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P (1987) Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 49(4):465–475CrossRefPubMedGoogle Scholar
  41. 41.
    Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A (2001) Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet 29(4):418–425CrossRefPubMedGoogle Scholar
  42. 42.
    Xu X, Wagner KU, Larson D, Weaver Z, Li C, Ried T, Hennighausen L, Wynshaw-Boris A, Deng CX (1999) Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat Genet 22(1):37–43CrossRefPubMedGoogle Scholar
  43. 43.
    Hollern DP, Andrechek E (2014) A genomic analysis of mouse models of breast cancer reveals molecular features of mouse models and relationships to human breast cancer. Breast Cancer Res 16(3):R59CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z, Rasmussen KE, Jones LP, Assefnia S, Chandrasekharan S et al (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8(5):R76CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Pfefferle AD, Herschkowitz JI, Usary J, Harrell JC, Spike BT, Adams JR et al (2013) Transcriptomic classification of genetically engineered mouse models of breast cancer identifies human subtype counterparts. Genome Biol 14(11):R125CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Rennhack J, To B, Wermuth H, Andrechek ER (2017) Mouse models of breast cancer share amplification and deletion events with human breast cancer. J Mammary Gland Biol Neoplasia 22(1):71–84CrossRefPubMedGoogle Scholar
  47. 47.
    Guy CT, Cardiff RD, Muller WJ (1992) Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 12(3):954–961CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT et al (2011) Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med 17(11):1514–1520CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Zhang X, Claerhout S, Prat A, Dobrolecki LE, Petrovic I, Lai Q, Landis MD, Wiechmann L, Schiff R, Giuliano M et al (2013) A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res 73(15):4885–4897CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, Arcaroli JJ, Messersmith WA, Eckhardt SG (2012) Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol 9(6):338–350CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    West M, Blanchette C, Dressman H, Huang E, Ishida S, Spang R, Zuzan H, Olson JA, Marks JR, Nevins JR (2001) Predicting the clinical status of human breast cancer by using gene expression profiles. Proc Natl Acad Sci U S A 98(20):11462–11467CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D, Joshi MB, Harpole D, Lancaster JM, Berchuck A et al (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439(7074):353–357CrossRefPubMedGoogle Scholar
  53. 53.
    Bild AH, Parker JS, Gustafson AM, Acharya CR, Hoadley KA, Anders C, Marcom PK, Carey LA, Potti A, Nevins JR et al (2009) An integration of complementary strategies for gene-expression analysis to reveal novel therapeutic opportunities for breast cancer. Breast Cancer Res 11(4):R55CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Gatza ML, Silva GO, Parker JS, Fan C, Perou CM (2014) An integrated genomics approach identifies drivers of proliferation in luminal-subtype human breast cancer. Nat Genet 46(10):1051–1059CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, Zhang H, McLellan M, Yau C, Kandoth C et al (2015) Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163(2):506–519CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Andrechek ER (2015) HER2/Neu tumorigenesis and metastasis is regulated by E2F activator transcription factors. Oncogene 34(2):217–225CrossRefPubMedGoogle Scholar
  57. 57.
    Andrechek ER, Cardiff RD, Chang JT, Gatza ML, Acharya CR, Potti A, Nevins JR (2009) Genetic heterogeneity of Myc-induced mammary tumors reflecting diverse phenotypes including metastatic potential. Proc Natl Acad Sci U S A 106(38):16387–16392CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Andrechek ER, Mori S, Rempel RE, Chang JT, Nevins JR (2008) Patterns of cell signaling pathway activation that characterize mammary development. Development 135(14):2403–2413CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Fujiwara K, Yuwanita I, Hollern DP, Andrechek ER (2011) Prediction and genetic demonstration of a role for activator E2Fs in Myc-induced tumors. Cancer Res 71(5):1924–1932CrossRefPubMedGoogle Scholar
  60. 60.
    Hollern DP, Yuwanita I, Andrechek ERA (2012) Mouse model with T58A mutations in Myc reduces the dependence on KRas mutations and has similarities to claudin-low human breast cancer. OncogeneGoogle Scholar
  61. 61.
    Jhan JR, Andrechek ER (2016) Stat3 accelerates Myc induced tumor formation while reducing growth rate in a mouse model of breast cancer. Oncotarget.  https://doi.org/10.18632/oncotarget.11667
  62. 62.
    Turpin J, Ling C, Crosby EJ, Hartman ZC, Simond AM, Chodosh LA, Rennhack JP, Andrechek ER, Ozcelik J, Hallett M et al (2016) The ErbB2DeltaEx16 splice variant is a major oncogenic driver in breast cancer that promotes a pro-metastatic tumor microenvironment. Oncogene 35(47):6053–6064CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Jhan JR, Andrechek ER (2017) Effective personalized therapy for breast cancer based on predictions of cell signaling pathway activation from gene expression analysis. Oncogene 36(25):3553–3561CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysiologyMichigan State UniversityEast LansingUSA
  2. 2.Department of Medicine, Division of Hematology/OncologyCollege of Human MedicineEast LansingUSA

Personalised recommendations