Journal of Molecular Medicine

, Volume 96, Issue 2, pp 119–133 | Cite as

PHP14 regulates hepatic stellate cells migration in liver fibrosis via mediating TGF-β1 signaling to PI3Kγ/AKT/Rac1 pathway

  • Anjian XuEmail author
  • Yanmeng Li
  • Wenshan Zhao
  • Fei Hou
  • Xiaojin Li
  • Lan Sun
  • Wei Chen
  • Aiting Yang
  • Shanna Wu
  • Bei Zhang
  • Jingyi Yao
  • Huan Wang
  • Jian HuangEmail author
Original Article


Hepatic fibrosis is characterized by the activation of hepatic stellate cells (HSCs). Migration of the activated HSCs to the site of injury is one of the key characteristics during the wound healing process. We have previously demonstrated that 14 kDa phosphohistidine phosphatase (PHP14) is involved in migration and lamellipodia formation of HSCs. However, the role of PHP14 in liver fibrosis remains unknown. In this study, we first assessed PHP14 expression and distribution in liver fibrotic tissues using western blot, immunohistochemistry, and double immunofluorescence staining. Next, we investigated the role of PHP14 in liver fibrosis and, more specifically, the migration of HSCs by Transwell assay and 3D collagen matrices assay. Finally, we explored the possible molecular mechanisms of the effects of PHP14 on these processes. Our results show that the PHP14 expression is up-regulated in fibrotic liver and mainly in HSCs. Importantly, TGF-β1 can induce PHP14 expression in HSCs accompanied with the activation of HSCs. Consistent with the previous study, PHP14 promotes HSCs migration, especially, promotes 3D floating collagen matrices contraction but inhibits stressed-released matrices contraction. Mechanistically, the PI3Kγ/AKT/Rac1 pathway is involved in migration regulated by PHP14. Moreover, PHP14 specifically mediates the TGF-β1 signaling to PI3Kγ/AKT pathway and regulates HSC migration, and thus participates in liver fibrosis. Our study identified the role of PHP14 in liver fibrosis, particularly HSC migration, and suggested a novel mediator of transducting TGF-β1 signaling to PI3Kγ/AKT/Rac1 pathway.

Key messages

  • PHP14 is up-regulated in fibrotic liver and activated hepatic stellate cells.

  • The expression of PHP14 is induced by TGF-β1.

  • The migration of hepatic stellate cells is regulated by PHP14.

  • PHP14 is a mediator of TGF-β1 signaling to PI3Kγ/AKT/Rac1 pathway in hepatic stellate cells.


PHP14 Hepatic stellate cell Migration PI3Kγ/AKT/Rac1 pathway Liver fibrosis 



This study was supported by a grant from the Beijing Talents Fund (no. 2016000021469G227); the National Natural Science Foundation of China (no.81071973); Wang Bao-En Liver Fibrosis Foundation (no. 20100013); and the Rising Star Program from Beijing Friendship Hospital (no. yyqdkt201516).

Compliance with ethical standards

Competing financial interests

The authors declare that have no competing interests.

Supplementary material

109_2017_1605_MOESM1_ESM.pdf (783 kb)
ESM 1 (PDF 782 kb)


  1. 1.
    Trautwein C, Friedman SL, Schuppan D, Pinzani M (2015) Hepatic fibrosis: concept to treatment. J Hepatol 62:S15–S24CrossRefPubMedGoogle Scholar
  2. 2.
    Friedman SL (2008) Hepatic fibrosis—overview. Toxicology 254:120–129CrossRefPubMedGoogle Scholar
  3. 3.
    Hautekeete ML, Geerts A (1997) The hepatic stellate (Ito) cell: its role in human liver disease. Virchows Arch 430:195–207CrossRefPubMedGoogle Scholar
  4. 4.
    Friedman SL (2008) Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88:125–172CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ek P, Pettersson G, Ek B, Gong F, Li JP, Zetterqvist O (2002) Identification and characterization of a mammalian 14-kDa phosphohistidine phosphatase. Eur J Biochem 269:5016–5023CrossRefPubMedGoogle Scholar
  6. 6.
    Klumpp S, Hermesmeier J, Selke D, Baumeister R, Kellner R, Krieglstein J (2002) Protein histidine phosphatase: a novel enzyme with potency for neuronal signaling. J Cereb Blood Flow Metab 22:1420–1424CrossRefPubMedGoogle Scholar
  7. 7.
    Klumpp S, Bechmann G, Maurer A, Selke D, Krieglstein J (2003) ATP-citrate lyase as a substrate of protein histidine phosphatase in vertebrates. Biochem Biophys Res Commun 306:110–115CrossRefPubMedGoogle Scholar
  8. 8.
    Maurer A, Wieland T, Meissl F, Niroomand F, Mehringer R, Krieglstein J, Klumpp S (2005) The beta-subunit of G proteins is a substrate of protein histidine phosphatase. Biochem Biophys Res Commun 334:1115–1120CrossRefPubMedGoogle Scholar
  9. 9.
    Xu A, Hao J, Zhang Z, Tian T, Jiang S, Hao J, Liu C, Huang L, Xiao X, He D (2010) 14-kDa phosphohistidine phosphatase and its role in human lung cancer cell migration and invasion. Lung Cancer 67:48–56CrossRefPubMedGoogle Scholar
  10. 10.
    Xu A, Li X, Li S, Sun L, Wu S, Zhang B, Huang J (2016) A novel role for 14-kDa phosphohistidine phosphatase in lamellipodia formation. Cell Adhes Migr:1–8.
  11. 11.
    Han SX, Wang LJ, Zhao J, Zhang Y, Li M, Zhou X, Wang J, Zhu Q (2012) 14-kDa Phosphohistidine phosphatase plays an important role in hepatocellular carcinoma cell proliferation. Oncol Lett 4:658–664CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cong M, Liu T, Wang P, Fan X, Yang A, Bai Y, Peng Z, Wu P, Tong X, Chen J et al (2013) Antifibrotic effects of a recombinant adeno-associated virus carrying small interfering RNA targeting TIMP-1 in rat liver fibrosis. Am J Pathol 182:1607–1616CrossRefPubMedGoogle Scholar
  13. 13.
    Xu A, Li X, Wu S, Lv T, Jin Q, Sun L, Huang J (2016) Knockdown of 14-kDa phosphohistidine phosphatase expression suppresses lung cancer cell growth in vivo possibly through inhibition of NF-kappaB signaling pathway. Neoplasma 63:540–547CrossRefPubMedGoogle Scholar
  14. 14.
    Grinnell F, Ho CH, Lin YC, Skuta G (1999) Differences in the regulation of fibroblast contraction of floating versus stressed collagen matrices. J Biol Chem 274:918–923CrossRefPubMedGoogle Scholar
  15. 15.
    Habas R, He X (2006) Activation of rho and Rac by Wnt/frizzled signaling. Methods Enzymol 406:500–511CrossRefPubMedGoogle Scholar
  16. 16.
    Lorenzini S, Bird TG, Boulter L, Bellamy C, Samuel K, Aucott R, Clayton E, Andreone P, Bernardi M, Golding M et al (2010) Characterisation of a stereotypical cellular and extracellular adult liver progenitor cell niche in rodents and diseased human liver. Gut 59:645–654CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kanta J (2015) Collagen matrix as a tool in studying fibroblastic cell behavior. Cell Adhes Migr 9:308–316CrossRefGoogle Scholar
  18. 18.
    Xue F, Janzen DM, Knecht DA (2010) Contribution of filopodia to cell migration: a mechanical link between protrusion and contraction. Int J Cell Biol 2010:507821Google Scholar
  19. 19.
    Rhee S, Grinnell F (2007) Fibroblast mechanics in 3D collagen matrices. Adv Drug Deliv Rev 59:1299–1305CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Okayama T, Kikuchi S, Ochiai T, Ikoma H, Kubota T, Ichikawa D, Fujiwara H, Okamoto K, Sakakura C, Sonoyama T et al (2008) Attenuated response to liver injury in moesin-deficient mice: impaired stellate cell migration and decreased fibrosis. Biochim Biophys Acta 1782:542–548CrossRefPubMedGoogle Scholar
  21. 21.
    Guimaraes EL, Stradiot L, Mannaerts I, Schroyen B, van Grunsven LA (2015) P311 modulates hepatic stellate cells migration. Liver Int 35:1253–1264CrossRefPubMedGoogle Scholar
  22. 22.
    Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB (1999) Myofibroblasts. I. Paracrine cells important in health and disease. Am J Phys 277:C1–C9CrossRefGoogle Scholar
  23. 23.
    Palmer TD, Ashby WJ, Lewis JD, Zijlstra A (2011) Targeting tumor cell motility to prevent metastasis. Adv Drug Deliv Rev 63:568–581CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rosenbloom J, Mendoza FA, Jimenez SA (2013) Strategies for anti-fibrotic therapies. Biochim Biophys Acta 1832:1088–1103CrossRefPubMedGoogle Scholar
  25. 25.
    Rottner K, Stradal TE (2011) Actin dynamics and turnover in cell motility. Curr Opin Cell Biol 23:569–578CrossRefPubMedGoogle Scholar
  26. 26.
    Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657CrossRefPubMedGoogle Scholar
  27. 27.
    Neri LM, Borgatti P, Capitani S, Martelli AM (2002) The nuclear phosphoinositide 3-kinase/AKT pathway: a new second messenger system. Biochim Biophys Acta 1584:73–80CrossRefPubMedGoogle Scholar
  28. 28.
    Martini M, De Santis MC, Braccini L, Gulluni F, Hirsch E (2014) PI3K/AKT signaling pathway and cancer: an updated review. Ann Med 46:372–383CrossRefPubMedGoogle Scholar
  29. 29.
    Stoyanov B, Volinia S, Hanck T, Rubio I, Loubtchenkov M, Malek D, Stoyanova S, Vanhaesebroeck B, Dhand R, Nurnberg B et al (1995) Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science 269:690–693CrossRefPubMedGoogle Scholar
  30. 30.
    Brock C, Schaefer M, Reusch HP, Czupalla C, Michalke M, Spicher K, Schultz G, Nurnberg B (2003) Roles of G beta gamma in membrane recruitment and activation of p110 gamma/p101 phosphoinositide 3-kinase gamma. J Cell Biol 160:89–99CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhang L, Zhou F, Ten DP (2013) Signaling interplay between transforming growth factor-beta receptor and PI3K/AKT pathways in cancer. Trends Biochem Sci 38:612–620CrossRefPubMedGoogle Scholar
  32. 32.
    Yi JY, Shin I, Arteaga CL (2005) Type I transforming growth factor beta receptor binds to and activates phosphatidylinositol 3-kinase. J Biol Chem 280:10870–10876CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Experimental Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
  2. 2.National Clinical Research Center for Digestive Disease, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
  3. 3.Department of Infection Beijing Friendship HospitalCapital Medical UniversityBeijingChina
  4. 4.Department of Pathology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
  5. 5.Clinical Laboratory Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina

Personalised recommendations