Advertisement

Journal of Molecular Medicine

, Volume 95, Issue 8, pp 809–819 | Cite as

Blood on the tracks: hematopoietic stem cell-endothelial cell interactions in homing and engraftment

  • Julie R. Perlin
  • Audrey Sporrij
  • Leonard I. Zon
Review

Abstract

Cells of the hematopoietic system undergo rapid turnover. Each day, humans require the production of about one hundred billion new blood cells for proper function. Hematopoietic stem cells (HSCs) are rare cells that reside in specialized niches and are required throughout life to produce specific progenitor cells that will replenish all blood lineages. There is, however, an incomplete understanding of the molecular and physical properties that regulate HSC migration, homing, engraftment, and maintenance in the niche. Endothelial cells (ECs) are intimately associated with HSCs throughout the life of the stem cell, from the specialized endothelial cells that give rise to HSCs, to the perivascular niche endothelial cells that regulate HSC homeostasis. Recent studies have dissected the unique molecular and physical properties of the endothelial cells in the HSC vascular niche and their role in HSC biology, which may be manipulated to enhance hematopoietic stem cell transplantation therapies.

Keywords

Hematopoietic stem cell Endothelial cell Stem cell niche Hematopoietic stem cell transplantation Homing Engraftment 

Notes

Acknowledgments

This work was supported by NIH grants R01HL04880, P01HL032262, P30DK049216, R01DK53298, U01HL10001, and R24DK092760. In addition, L.I.Z. is a Howard Hughes Medical Institute investigator, J.R.P. is an American Cancer Society postdoctoral fellow, and A.S. is supported by a Boehringer Ingelheim Fonds PhD fellowship. We also thank Anne L. Robertson and Elliott J. Hagedorn for helpful comments.

References

  1. 1.
    Orkin SH, Zon LI (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132:631–644PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Samokhvalov IM, Samokhvalova NI, Nishikawa S-I (2007) Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature 446:1056–1061PubMedCrossRefGoogle Scholar
  3. 3.
    North TE, de Bruijn MFTR, Stacy T, Talebian L, Lind E, Robin C, Binder M, Dzierzak E, Speck NA (2002) Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity 16:661–672PubMedCrossRefGoogle Scholar
  4. 4.
    Göthert JR, Gustin SE, Hall MA, Green AR, Göttgens B, Izon DJ, Begley CG (2005) In vivo fate-tracing studies using the Scl stem cell enhancer: embryonic hematopoietic stem cells significantly contribute to adult hematopoiesis. Blood 105:2724–2732PubMedCrossRefGoogle Scholar
  5. 5.
    Sanchez MJ, Holmes A, Miles C, Dzierzak E (1996) Characterization of the first definitive hematopoietic stem cells in the AGM and liver of the mouse embryo. Immunity 5:513–525PubMedCrossRefGoogle Scholar
  6. 6.
    Boisset J-C, van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, Robin C (2010) In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 464:116–120PubMedCrossRefGoogle Scholar
  7. 7.
    Kissa K, Herbomel P (2010) Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464:112–115PubMedCrossRefGoogle Scholar
  8. 8.
    Bertrand JY, Chi NC, Santoso B, Teng S, Stainier DYR, Traver D (2010) Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464:108–111PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Müller AM, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E (1994) Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1:291–301PubMedCrossRefGoogle Scholar
  10. 10.
    Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505:327–334PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Mendelson A, Frenette PS (2014) Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med 20:833–846PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Birbrair A, Frenette PS (2016) Niche heterogeneity in the bone marrow. Ann N Y Acad Sci 1370:82–96PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Chen JY, Miyanishi M, Wang SK, Yamazaki S, Sinha R, Kao KS, Seita J, Sahoo D, Nakauchi H, Weissman IL (2016) Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature 530:223–227PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121PubMedCrossRefGoogle Scholar
  15. 15.
    Rafii S, Butler JM, Ding B-S (2016) Angiocrine functions of organ-specific endothelial cells. Nature 529:316–325PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Kobayashi H, Butler JM, O'Donnell R, Kobayashi M, Ding B-S, Bonner B, Chiu VK, Nolan DJ, Shido K, Benjamin L et al (2010) Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat Cell Biol 12:1046–1056PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481:457–462PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Ohneda O, Fennie C, Zheng Z, Donahue C, La H, Villacorta R, Cairns B, Lasky LA (1998) Hematopoietic stem cell maintenance and differentiation are supported by embryonic aorta-gonad-mesonephros region-derived endothelium. Blood 92:908–919PubMedGoogle Scholar
  19. 19.
    Rafii S, Shapiro F, Pettengell R, Ferris B, Nachman RL, Moore MA, Asch AS (1995) Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors. Blood 86:3353–3363PubMedGoogle Scholar
  20. 20.
    Lu LS, Wang SJ, Auerbach R (1996) In vitro and in vivo differentiation into B cells, T cells, and myeloid cells of primitive yolk sac hematopoietic precursor cells expanded >100-fold by coculture with a clonal yolk sac endothelial cell line. P Natl Acad Sci USA 93:14782–14787CrossRefGoogle Scholar
  21. 21.
    Li W, Johnson SA, Shelley WC, Ferkowicz M, Morrison P, Li Y, Yoder MC (2003) Primary endothelial cells isolated from the yolk sac and para-aortic splanchnopleura support the expansion of adult marrow stem cells in vitro. Blood 102:4345–4353PubMedCrossRefGoogle Scholar
  22. 22.
    Yao L, Yokota T, Xia L, Kincade PW, McEver RP (2005) Bone marrow dysfunction in mice lacking the cytokine receptor gp130 in endothelial cells. Blood 106:4093–4101PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495:231–235PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Greenbaum A, Hsu Y-MS, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, Nagasawa T, Link DC (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495:227–230PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kisanuki YY, Kisanuki YY, Hammer RE, Hammer RE, Miyazaki J, Miyazaki J-I, Williams SC, Williams SC, Richardson JA, Richardson JA et al (2001) Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol 230:230–242PubMedCrossRefGoogle Scholar
  26. 26.
    de Jong JLO, Zon LI (2005) Use of the zebrafish system to study primitive and definitive hematopoiesis. Annu Rev Genet 39:481–501PubMedCrossRefGoogle Scholar
  27. 27.
    Swift MR, Swift MR, Weinstein BM, Weinstein BM (2009) Arterial-venous specification during development. Circ Res 104:576–588PubMedCrossRefGoogle Scholar
  28. 28.
    Murayama E, Kissa K, Zapata A, Mordelet E, Briolat V, Lin H-F, Handin RI, Herbomel P (2006) Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity 25:963–975PubMedCrossRefGoogle Scholar
  29. 29.
    Tamplin OJ, Durand EM, Carr LA, Childs SJ, Hagedorn EJ, Li P, Yzaguirre AD, Speck NA, Zon LI (2015) Hematopoietic stem cell arrival triggers dynamic remodeling of the perivascular niche. Cell 160:241–252PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Zhen F, Lan Y, Yan B, Zhang W, Wen Z (2013) Hemogenic endothelium specification and hematopoietic stem cell maintenance employ distinct Scl isoforms. Development 140:3977–3985PubMedCrossRefGoogle Scholar
  31. 31.
    Kissa K, Kissa K, Murayama E, Murayama E, Zapata A, Zapata A, Cortés A, Cortes A, Perret E, Perret E et al (2007) Live imaging of emerging hematopoietic stem cells and early thymus colonization. Blood 111:1147–1156PubMedCrossRefGoogle Scholar
  32. 32.
    Aird WC, Aird WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100:158–173PubMedCrossRefGoogle Scholar
  33. 33.
    Nolan DJ, Ginsberg M, Israely E, Palikuqi B, Poulos MG, James D, Ding B-S, Schachterle W, Liu Y, Rosenwaks Z et al (2013) Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev Cell 26:204–219PubMedCrossRefGoogle Scholar
  34. 34.
    You L-R, Lin F-J, Lee CT, DeMayo FJ, Tsai M-J, Tsai SY (2005) Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature 435:98–104PubMedCrossRefGoogle Scholar
  35. 35.
    Chen X, Qin J, Cheng C-M, Tsai M-J, Tsai SY (2012) COUP-TFII is a major regulator of cell cycle and Notch signaling pathways. Mol Endocrinol 26:1268–1277PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Corada M, Corada M, Morini MF, Morini MF, Dejana E, Dejana E (2014) Signaling pathways in the specification of arteries and veins. Arterioscl Throm Vas 34:2372–2377CrossRefGoogle Scholar
  37. 37.
    De Val S, Black BL (2009) Transcriptional control of endothelial cell development. Dev Cell 16:180–195PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    De Val S, De Val S (2011) Key transcriptional regulators of early vascular development. Arterioscl Throm Vas 31:1469–1475CrossRefGoogle Scholar
  39. 39.
    Francois M, Koopman P, Beltrame M (2010) SoxF genes: key players in the development of the cardio-vascular system. Int J Biochem Cell B 42:445–448CrossRefGoogle Scholar
  40. 40.
    Dejana E, Dejana E, TADDEI A, Taddei A, Randi AM, RANDI A (2007) Foxs and Ets in the transcriptional regulation of endothelial cell differentiation and angiogenesis. BBA-Rev Cancer 1775:298–312Google Scholar
  41. 41.
    Heazlewood SY, Oteiza A, Cao H, Nilsson SK (2014) Analyzing hematopoietic stem cell homing, lodgment, and engraftment to better understand the bone marrow niche. Ann N Y Acad Sci 1310:119–128PubMedCrossRefGoogle Scholar
  42. 42.
    Sackstein R (2016) Fulfilling Koch's postulates in glycoscience: HCELL, GPS and translational glycobiology. Glycobiology 26:560–570PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689PubMedCrossRefGoogle Scholar
  44. 44.
    Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6:93–106PubMedCrossRefGoogle Scholar
  45. 45.
    Langer HF, Chavakis T (2009) Leukocyte-endothelial interactions in inflammation. J Cell Mol Med 13:1211–1220PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Frenette PS, Mayadas TN, Rayburn H, Hynes RO, Wagner DD (1996) Susceptibility to infection and altered hematopoiesis in mice deficient in both P- and E-selectins. Cell 84:563–574PubMedCrossRefGoogle Scholar
  47. 47.
    Schweitzer KM, Dräger AM, van der Valk P, Thijsen SF, Zevenbergen A, Theijsmeijer AP, van der Schoot CE, Langenhuijsen MM (1996) Constitutive expression of E-selectin and vascular cell adhesion molecule-1 on endothelial cells of hematopoietic tissues. Am J Pathol 148:165–175PubMedPubMedCentralGoogle Scholar
  48. 48.
    Mazo IB, Andrian von UH (1999) Adhesion and homing of blood-borne cells in bone marrow microvessels. J Leukoc Biol 66:25–32PubMedGoogle Scholar
  49. 49.
    Dimitroff CJ, Lee JY, Rafii S, Fuhlbrigge RC, Sackstein R (2001) Cd44 is a major E-selectin ligand on human hematopoietic progenitor cells. J Cell Biol 153:1277–1286PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Merzaban JS, Burdick MM, Gadhoum SZ, Dagia NM, Chu JT, Fuhlbrigge RC, Sackstein R (2011) Analysis of glycoprotein E-selectin ligands on human and mouse marrow cells enriched for hematopoietic stem/progenitor cells. Blood 118:1774–1783PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Burdick MM, Chu JT, Godar S, Sackstein R (2006) HCELL is the major E- and L-selectin ligand expressed on LS174T colon carcinoma cells. J Biol Chem 281:13899–13905PubMedCrossRefGoogle Scholar
  52. 52.
    Katayama Y, Hidalgo A, Peired A, Frenette PS (2004) Integrin alpha4beta7 and its counterreceptor MAdCAM-1 contribute to hematopoietic progenitor recruitment into bone marrow following transplantation. Blood 104:2020–2026PubMedCrossRefGoogle Scholar
  53. 53.
    Hidalgo A, Weiss LA, Frenette PS (2002) Functional selectin ligands mediating human CD34(+) cell interactions with bone marrow endothelium are enhanced postnatally. J Clin Invest 110:559–569PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Peled A, Grabovsky V, Habler L, Sandbank J, Arenzana-Seisdedos F, Petit I, Ben-Hur H, Lapidot T, Alon R (1999) The chemokine SDF-1 stimulates integrin-mediated arrest of CD34+ cells on vascular endothelium under shear flow. J Clin Invest 104:1199–1211PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, Nagler A, Ben-Hur H, Many A, Shultz L et al (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283:845–848PubMedCrossRefGoogle Scholar
  56. 56.
    Dar A, Kollet O, Lapidot T (2006) Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Exp Hematol 34:967–975PubMedCrossRefGoogle Scholar
  57. 57.
    Peled A, Kollet O, Ponomaryov T, Petit I, Franitza S, Grabovsky V, Slav MM, Nagler A, Lider O, Alon R et al (2000) The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95:3289–3296PubMedGoogle Scholar
  58. 58.
    Frenette PS, Subbarao S, Mazo IB, Andrian von UH, Wagner DD (1998) Endothelial selectins and vascular cell adhesion molecule-1 promote hematopoietic progenitor homing to bone marrow. P Natl Acad Sci USA 95:14423–14428CrossRefGoogle Scholar
  59. 59.
    Imai K, Kobayashi M, Wang J, Shinobu N, Yoshida H, Hamada J-I, Shindo M, Higashino F, Tanaka J, Asaka M et al (1999) Selective secretion of chemoattractants for haemopoietic progenitor cells by bone marrow endothelial cells: a possible role in homing of haemopoietic progenitor cells to bone marrow. Brit J Haematol 106:905–911CrossRefGoogle Scholar
  60. 60.
    Carstanjen D, Gross A, Kosova N, Fichtner I, Salama A (2005) The alpha4beta1 and alpha5beta1 integrins mediate engraftment of granulocyte-colony-stimulating factor-mobilized human hematopoietic progenitor cells. Transfusion 45:1192–1200PubMedCrossRefGoogle Scholar
  61. 61.
    Nombela-Arrieta C, Pivarnik G, Winkel B, Canty KJ, Harley B, Mahoney JE, Park S-Y, Lu J, Protopopov A, Silberstein LE (2013) Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol 15:1016–1016CrossRefGoogle Scholar
  62. 62.
    Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, Mizoguchi T, Wei Q, Lucas D, Ito K et al (2013) Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502:637–643PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Kusumbe AP, Ramasamy SK, Adams RH (2014) Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507:323–328PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Itkin T, Gur-Cohen S, Spencer JA, Schajnovitz A, Ramasamy SK, Kusumbe AP, Ledergor G, Jung Y, Milo I, Poulos MG et al (2016) Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532:323–328PubMedCrossRefGoogle Scholar
  65. 65.
    Lassailly F, Lassailly F, Foster K, Foster K, Lopez-Onieva L, Lopez-Onieva L, Currie E, Currie E, Bonnet D, Bonnet D (2013) Multimodal imaging reveals structural and functional heterogeneity in different bone marrow compartments: functional implications on hematopoietic stem cells. Blood 122:1730–1740PubMedCrossRefGoogle Scholar
  66. 66.
    Li XM, Li X-M, Hu Z, Hu Z, Jorgenson ML, Jorgenson ML, Slayton WB, Slayton WB (2009) High levels of acetylated low-density lipoprotein uptake and low tyrosine kinase with immunoglobulin and epidermal growth factor homology domains-2 (Tie2) promoter activity distinguish sinusoids from other vessel types in murine bone marrow. Circulation 120:1910–1918PubMedCrossRefGoogle Scholar
  67. 67.
    Abboud CN (1995) Human bone marrow microvascular endothelial cells: elusive cells with unique structural and functional properties. Exp Hematol 23:1–3PubMedGoogle Scholar
  68. 68.
    Rafii S, Rafii S, Möhle R, Mohle R, Shapiro F, Shapiro F, Frey BM, Frey BM, Moore MA, Moore MAS (2009) Regulation of hematopoiesis by microvascular endothelium. Leukemia Lymphoma 27:375–386CrossRefGoogle Scholar
  69. 69.
    Ulyanova T, Scott LM, Priestley GV, Jiang Y, Nakamoto B, Koni PA, Papayannopoulou T (2005) VCAM-1 expression in adult hematopoietic and nonhematopoietic cells is controlled by tissue-inductive signals and reflects their developmental origin. Blood 106:86–94PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Papayannopoulou T, Priestley GV, Nakamoto B, Zafiropoulos V, Scott LM (2001) Molecular pathways in bone marrow homing: dominant role of alpha(4)beta(1) over beta(2)-integrins and selectins. Blood 98:2403–2411PubMedCrossRefGoogle Scholar
  71. 71.
    Winkler IG, Barbier V, Nowlan B, Jacobsen RN, Forristal CE, Patton JT, Magnani JL, Lévesque J-P (2012) Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat Med 18:1651–1657PubMedCrossRefGoogle Scholar
  72. 72.
    Kunisaki Y, Frenette PS (2014) Influences of vascular niches on hematopoietic stem cell fate. Int J Hematol 99:699–705PubMedCrossRefGoogle Scholar
  73. 73.
    Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, Taketo MM, Karlsson S, Iwama A, Nakauchi H (2011) Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147:1146–1158PubMedCrossRefGoogle Scholar
  74. 74.
    Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25:977–988PubMedCrossRefGoogle Scholar
  75. 75.
    Tesio M, Golan K, Corso S, Giordano S, Schajnovitz A, Vagima Y, Shivtiel S, Kalinkovich A, Caione L, Gammaitoni L et al (2011) Enhanced c-Met activity promotes G-CSF-induced mobilization of hematopoietic progenitor cells via ROS signaling. Blood 117:419–428PubMedCrossRefGoogle Scholar
  76. 76.
    Golan K, Vagima Y, Ludin A, Itkin T, Cohen-Gur S, Kalinkovich A, Kollet O, Kim C, Schajnovitz A, Ovadya Y et al (2012) S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release. Blood 119:2478–2488PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K, Ohmura M, Naka K, Hosokawa K, Ikeda Y et al (2006) Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12:446–451PubMedCrossRefGoogle Scholar
  78. 78.
    Miyamoto K, Araki KY, Naka K, Arai F, Takubo K, Yamazaki S, Matsuoka S, Miyamoto T, Ito K, Ohmura M et al (2007) Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1:101–112PubMedCrossRefGoogle Scholar
  79. 79.
    Celso Lo C, Fleming HE, Wu JW, Zhao CX, Miake-Lye S, Fujisaki J, Côté D, Rowe DW, Lin CP, Scadden DT (2008) Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457:92–96CrossRefGoogle Scholar
  80. 80.
    Bixel MG, Kusumbe AP, Ramasamy SK, Sivaraj KK, Butz S, Vestweber D, Adams RH (2017) Flow dynamics and HSPC homing in bone marrow microvessels. Cell Rep 18:1804–1816PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Vogeli KM, Jin S-W, Martin GR, Stainier DYR (2006) A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula. Nature 443:337–339PubMedCrossRefGoogle Scholar
  82. 82.
    Florey (1966) The endothelial cell. Brit Med J 2:487–490.Google Scholar
  83. 83.
    Tuthill M, Hatzimichael (2010) Hematopoietic stem cell transplantation. Stem Cells and Cloning: Advances and Applications Volume 3:105–117. doi: Google Scholar
  84. 84.
    Gratwohl A, Baldomero H, Aljurf M, Pasquini MC, Bouzas LF, Yoshimi A, Szer J, Lipton J, Schwendener A, Gratwohl M et al (2010) Hematopoietic stem cell transplantation: a global perspective. JAMA 303:1617–1624PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Ratajczak MZ (2014) A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking. Leukemia 29:776–782PubMedCrossRefGoogle Scholar
  86. 86.
    Rafii S, Shapiro F, Rimarachin J, Nachman RL, Ferris B, Weksler B, Moore MA, Asch AS (1994) Isolation and characterization of human bone marrow microvascular endothelial cells: hematopoietic progenitor cell adhesion. Blood 84:10–19PubMedGoogle Scholar
  87. 87.
    Butler JM, Nolan DJ, Vertes EL, Varnum-Finney B, Kobayashi H, Hooper AT, Seandel M, Shido K, White IA, Kobayashi M et al (2010) Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6:251–264PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Hooper AT, Butler JM, Nolan DJ, Kranz A, Iida K, Kobayashi M, Kopp H-G, Shido K, Petit I, Yanger K et al (2009) Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4:263–274PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Li W, Johnson SA, Shelley WC, Yoder MC (2004) Hematopoietic stem cell repopulating ability can be maintained in vitro by some primary endothelial cells. Exp Hematol 32:1226–1237PubMedCrossRefGoogle Scholar
  90. 90.
    Chute JP, Muramoto GG, Fung J, Oxford C (2005) Soluble factors elaborated by human brain endothelial cells induce the concomitant expansion of purified human BM CD34+CD38- cells and SCID-repopulating cells. Blood 105:576–583PubMedCrossRefGoogle Scholar
  91. 91.
    Brandt JE, Galy AH, Luens KM, Travis M, Young J, Tong J, Chen S, Davis TA, Lee KP, Chen BP et al (1998) Bone marrow repopulation by human marrow stem cells after long-term expansion culture on a porcine endothelial cell line. Exp Hematol 26:950–961PubMedGoogle Scholar
  92. 92.
    Brandt JE, Bartholomew AM, Fortman JD, Nelson MC, Bruno E, Chen LM, Turian JV, Davis TA, Chute JP, Hoffman R (1999) Ex vivo expansion of autologous bone marrow CD34(+) cells with porcine microvascular endothelial cells results in a graft capable of rescuing lethally irradiated baboons. Blood 94:106–113PubMedGoogle Scholar
  93. 93.
    Chute JP, Saini AA, Kampen RL, Wells MR, Davis TA (1999) A comparative study of the cell cycle status and primitive cell adhesion molecule profile of human CD34+ cells cultured in stroma-free versus porcine microvascular endothelial cell cultures. Exp Hematol 27:370–379PubMedCrossRefGoogle Scholar
  94. 94.
    Li N, Eljaafari A, Bensoussan D, Wang Y, Latger-Cannard V, Serrurier B, Boura C, Kennel A, Stoltz J, Feugier P (2006) Human umbilical vein endothelial cells increase ex vivo expansion of human CD34(+) PBPC through IL-6 secretion. Cytotherapy 8:335–342PubMedCrossRefGoogle Scholar
  95. 95.
    Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52:2745–2756PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Yildirim S, Boehmler AM, Kanz L, Möhle R (2005) Expansion of cord blood CD34+ hematopoietic progenitor cells in coculture with autologous umbilical vein endothelial cells (HUVEC) is superior to cytokine-supplemented liquid culture. Bone Marrow Transpl 36:71–79CrossRefGoogle Scholar
  97. 97.
    Salter AB, Meadows SK, Muramoto GG, Himburg H, Doan P, Daher P, Russell L, Chen B, Chao NJ, Chute JP (2009) Endothelial progenitor cell infusion induces hematopoietic stem cell reconstitution in vivo. Blood 113:2104–2107PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Chute JP, Muramoto GG, Salter AB, Meadows SK, Rickman DW, Chen B, Himburg HA, Chao NJ (2007) Transplantation of vascular endothelial cells mediates the hematopoietic recovery and survival of lethally irradiated mice. Blood 109:2365–2372PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Li B, Bailey AS, Jiang S, Liu B, Goldman DC, Fleming WH (2010) Endothelial cells mediate the regeneration of hematopoietic stem cells. Stem Cell Res 4:17–24PubMedCrossRefGoogle Scholar
  100. 100.
    Raynaud CM, Butler JM, Halabi NM, Ahmad FS, Ahmed B, Rafii S, Rafii A (2013) Endothelial cells provide a niche for placental hematopoietic stem/progenitor cell expansion through broad transcriptomic modification. Stem Cell Res 11:1074–1090PubMedCrossRefGoogle Scholar
  101. 101.
    Seandel M, Butler JM, Kobayashi H, Hooper AT, White IA, Zhang F, Vertes EL, Kobayashi M, Zhang Y, Shmelkov SV et al (2008) Generation of a functional and durable vascular niche by the adenoviral E4ORF1 gene. P Natl Acad Sci USA 105:19288–19293CrossRefGoogle Scholar
  102. 102.
    Hadland BK, Varnum-Finney B, Poulos MG, Moon RT, Butler JM, Rafii S, Bernstein ID (2015) Endothelium and NOTCH specify and amplify aorta-gonad-mesonephros-derived hematopoietic stem cells. J Clin Invest 125:2032–2045PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Poulos MG, Crowley MJP, Gutkin MC, Ramalingam P, Schachterle W, Thomas J-L, Elemento O, Butler JM (2015) Vascular platform to define hematopoietic stem cell factors and enhance regenerative hematopoiesis. Stem Cell Reports 5:881–894PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Butler JM, Gars EJ, James DJ, Nolan DJ, Scandura JM, Rafii S (2012) Development of a vascular niche platform for expansion of repopulating human cord blood stem and progenitor cells. Blood 120:1344–1347PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Gori JL, Butler JM, Kunar B, Poulos MG, Ginsberg M, Nolan DJ, Norgaard ZK, Adair JE, Rafii S, Kiem H-P (2017) Endothelial cells promote expansion of long-term engrafting marrow hematopoietic stem and progenitor cells in primates. Stem Cells Transl Med 6:864–876PubMedCrossRefGoogle Scholar
  106. 106.
    Cancelas JA, Lee AW, Prabhakar R, Stringer KF, Zheng Y, Williams DA (2005) Rac GTPases differentially integrate signals regulating hematopoietic stem cell localization. Nat Med 11:886–891PubMedCrossRefGoogle Scholar
  107. 107.
    Gu Y, Filippi M-D, Cancelas JA, Siefring JE, Williams EP, Jasti AC, Harris CE, Lee AW, Prabhakar R, Atkinson SJ et al (2003) Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science 302:445–449PubMedCrossRefGoogle Scholar
  108. 108.
    Wu W, Kim CH, Liu R, Kucia M, Marlicz W, Greco N, Ratajczak J, Laughlin MJ, Ratajczak MZ (2011) The bone marrow-expressed antimicrobial cationic peptide LL-37 enhances the responsiveness of hematopoietic stem progenitor cells to an SDF-1 gradient and accelerates their engraftment after transplantation. Leukemia 26:736–745PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Capitano ML, Hangoc G, Cooper S, Broxmeyer HE (2015) Mild heat treatment primes human CD34(+) cord blood cells for migration toward SDF-1α and enhances engraftment in an NSG mouse model. Stem Cells 33:1975–1984PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Wysoczynski M, Reca R, Ratajczak J, Kucia M, Shirvaikar N, Honczarenko M, Mills M, Wanzeck J, Janowska-Wieczorek A, Ratajczak MZ (2005) Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Blood 105:40–48PubMedCrossRefGoogle Scholar
  111. 111.
    Moghaddam F, Oodi A, Nikougoftar Zarif M, Amani M, Amirizadeh N (2016) Expression of CXCR4 in cord blood-derived CD133+ cells treated with platelet micro-particles. Artif Cell Nanomed B 44:1702–1707CrossRefGoogle Scholar
  112. 112.
    Janowska-Wieczorek A, Majka M, Kijowski J, Baj-Krzyworzeka M, Reca R, Turner AR, Ratajczak J, Emerson SG, Kowalska MA, Ratajczak MZ (2001) Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment. Blood 98:3143–3149PubMedCrossRefGoogle Scholar
  113. 113.
    North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, Weber GJ, Bowman TV, Jang I-H, Grosser T et al (2007) Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447:1007–1011PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Hoggatt J, Singh P, Sampath J, Pelus LM (2009) Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood 113:5444–5455PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Goessling W, Allen RS, Guan X, Jin P, Uchida N, Dovey M, Harris JM, Metzger ME, Bonifacino AC, Stroncek D et al (2011) Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models. Cell Stem Cell 8:445–458PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Cutler C, Multani P, Robbins D, Kim HT, Le T, Hoggatt J, Pelus LM, Desponts C, Chen Y-B, Rezner B et al (2013) Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Blood 122:3074–3081PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Broxmeyer HE, Pelus LM (2014) Inhibition of DPP4/CD26 and dmPGE2 treatment enhances engraftment of mouse bone marrow hematopoietic stem cells. Blood Cell Mol Dis 53:34–38CrossRefGoogle Scholar
  118. 118.
    Gul H, Marquez-Curtis LA, Jahroudi N, Lo J, Turner AR, Janowska-Wieczorek A (2009) Valproic acid increases CXCR4 expression in hematopoietic stem/progenitor cells by chromatin remodeling. Stem Cells Dev 18:831–838PubMedCrossRefGoogle Scholar
  119. 119.
    Yoo E, Paganessi LA, Alikhan WA, Paganessi EA, Hughes F, Fung HC, Rich E, Seong CM, Christopherson KW (2013) Loss of CD26 protease activity in recipient mice during hematopoietic stem cell transplantation results in improved transplant efficiency. Transfusion 53:878–887PubMedCrossRefGoogle Scholar
  120. 120.
    Christopherson KW, Hangoc G, Mantel CR, Broxmeyer HE (2004) Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 305:1000–1003PubMedCrossRefGoogle Scholar
  121. 121.
    Xia L, McDaniel JM, Yago T, Doeden A, McEver RP (2004) Surface fucosylation of human cord blood cells augments binding to P-selectin and E-selectin and enhances engraftment in bone marrow. Blood 104:3091–3096PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Julie R. Perlin
    • 1
    • 2
  • Audrey Sporrij
    • 1
    • 2
  • Leonard I. Zon
    • 1
    • 2
  1. 1.Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Stem Cell Institute, Howard Hughes Medical InstituteHarvard Medical SchoolBostonUSA
  2. 2.Department of Stem Cell and Regenerative Biology and Harvard Stem Cell InstituteHarvard UniversityCambridgeUSA

Personalised recommendations