Advertisement

Journal of Molecular Medicine

, Volume 95, Issue 6, pp 575–588 | Cite as

The expansive role of oxylipins on platelet biology

  • Jennifer Yeung
  • Megan Hawley
  • Michael HolinstatEmail author
Review

Abstract

In mammals, three major oxygenases, cyclooxygenases (COXs), lipoxygenases (LOXs), and cytochrome P450 (CYP450), generate an assortment of unique lipid mediators (oxylipins) from polyunsaturated fatty acids (PUFAs) which exhibit pro- or anti-thrombotic activity. Over the years, novel oxylipins generated from the interplay of theoxygenase activity in various cells, such as the specialized pro-resolving mediators (SPMs), have been identified and investigated in inflammatory disease models. Although platelets have been implicated in inflammation, the role and mechanism of these SPMs produced from immune cells on platelet function are still unclear. This review highlights the burgeoning classes of oxylipins that have been found to regulate platelet function; however, their mechanism of action still remains to be elucidated.

Keywords

Lipoxygenase Cyclooxygenase Oxygenases Eicosanoids Prostaglandins Thrombosis 

Notes

Compliance with ethical standards

Sources of funding

This work was supported in part, by the National Institutes of Health Office of Dietary Supplement, R01 GM105671 (MH), R01 HL114405 (MH), and F31 HL129481 (JY).

References

  1. 1.
    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ et al (2015) Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 131:e29–322PubMedCrossRefGoogle Scholar
  2. 2.
    Jackson SP (2011) Arterial thrombosis—insidious, unpredictable and deadly. Nat Med 17:1423–1436PubMedCrossRefGoogle Scholar
  3. 3.
    Tourdot BE, Ahmed I, Holinstat M (2014) The emerging role of oxylipins in thrombosis and diabetes. Front Pharmacol 4:176PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Rouzer CA, Marnett LJ (2009) Cyclooxygenases: structural and functional insights. J Lipid Res 50(Suppl):S29–S34PubMedPubMedCentralGoogle Scholar
  5. 5.
    Chandrasekharan JA, Marginean A, Sharma-Walia N (2016) An insight into the role of arachidonic acid derived lipid mediators in virus associated pathogenesis and malignancies. Prostaglandins Other Lipid Mediat 126:46–54PubMedCrossRefGoogle Scholar
  6. 6.
    Ricciotti E, FitzGerald GA (2011) Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 31:986–1000PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Patterson E, Wall R, Fitzgerald GF, Ross RP, Stanton C (2012) Health implications of high dietary omega-6 polyunsaturated fatty acids. J Nutr Metab 2012:539426PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Nakahata N (2008) Thromboxane A2: physiology/pathophysiology, cellular signal transduction and pharmacology. Pharmacol Ther 118:18–35PubMedCrossRefGoogle Scholar
  9. 9.
    Oelz O, Oelz R, Knapp HR, Sweetman BJ, Oates JA (1977) Biosynthesis of prostaglandin D2. 1. Formation of prostaglandin D2 by human platelets. Prostaglandins 13:225–234PubMedCrossRefGoogle Scholar
  10. 10.
    Whittle BJ, Moncada S, Vane JR (1978) Comparison of the effects of prostacyclin (PGI2), prostaglandin E1 and D2 on platelet aggregation in different species. Prostaglandins 16:373–388PubMedCrossRefGoogle Scholar
  11. 11.
    Song WL, Stubbe J, Ricciotti E, Alamuddin N, Ibrahim S, Crichton I, Prempeh M, Lawson JA, Wilensky RL, Rasmussen LM et al (2012) Niacin and biosynthesis of PGD(2)by platelet COX-1 in mice and humans. J Clin Invest 122:1459–1468PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bushfield M, McNicol A, MacIntyre DE (1985) Inhibition of platelet-activating-factor-induced human platelet activation by prostaglandin D2. Differential sensitivity of platelet transduction processes and functional responses to inhibition by cyclic AMP. Biochem J 232:267–271PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Pettipher R (2008) The roles of the prostaglandin D(2) receptors DP(1) and CRTH2 in promoting allergic responses. Br J Pharmacol 153(Suppl 1):S191–S199PubMedGoogle Scholar
  14. 14.
    Spik I, Brenuchon C, Angeli V, Staumont D, Fleury S, Capron M, Trottein F, Dombrowicz D (2005) Activation of the prostaglandin D2 receptor DP2/CRTH2 increases allergic inflammation in mouse. J Immunol 174:3703–3708PubMedCrossRefGoogle Scholar
  15. 15.
    Harris SG, Phipps RP (2002) Prostaglandin D(2), its metabolite 15-d-PGJ(2), and peroxisome proliferator activated receptor-gamma agonists induce apoptosis in transformed, but not normal, human T lineage cells. Immunology 105:23–34PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Hata AN, Breyer RM (2004) Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation. Pharmacol Ther 103:147–166PubMedCrossRefGoogle Scholar
  17. 17.
    Bundy GL, Morton DR, Peterson DC, Nishizawa EE, Miller WL (1983) Synthesis and platelet aggregation inhibiting activity of prostaglandin D analogues. J Med Chem 26:790–799PubMedCrossRefGoogle Scholar
  18. 18.
    Mahmud I, Smith DL, Whyte MA, Nelson JT, Cho D, Tokes LG, Alvarez R, Willis AL (1984) On the identification and biological properties of prostaglandin J2. Prostaglandins Leukot Med 16:131–146PubMedCrossRefGoogle Scholar
  19. 19.
    Cheng Y, Austin SC, Rocca B, Koller BH, Coffman TM, Grosser T, Lawson JA, FitzGerald GA (2002) Role of prostacyclin in the cardiovascular response to thromboxane A2. Science 296:539–541PubMedCrossRefGoogle Scholar
  20. 20.
    Haslam RJ, Dickinson NT, Jang EK (1999) Cyclic nucleotides and phosphodiesterases in platelets. Thromb Haemost 82:412–423PubMedGoogle Scholar
  21. 21.
    Offermanns S (2006) Activation of platelet function through G protein-coupled receptors. Circ Res 99:1293–1304PubMedCrossRefGoogle Scholar
  22. 22.
    Hui Y, Ricciotti E, Crichton I, Yu Z, Wang D, Stubbe J, Wang M, Pure E, FitzGerald GA (2010) Targeted deletions of cyclooxygenase-2 and atherogenesis in mice. Circulation 121:2654–2660PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Sergeant S, Rahbar E, Chilton FH (2016) Gamma-linolenic acid, Dihommo-gamma linolenic, eicosanoids and inflammatory processes. Eur J Pharmacol 785:77–86PubMedCrossRefGoogle Scholar
  24. 24.
    Lagarde M, Bernoud-Hubac N, Calzada C, Vericel E, Guichardant M (2013) Lipidomics of essential fatty acids and oxygenated metabolites. Mol Nutr Food Res 57:1347–1358PubMedCrossRefGoogle Scholar
  25. 25.
    Needleman P, Whitaker MO, Wyche A, Watters K, Sprecher H, Raz A (1980) Manipulation of platelet aggregation by prostaglandins and their fatty acid precursors: pharmacological basis for a therapeutic approach. Prostaglandins 19:165–181PubMedCrossRefGoogle Scholar
  26. 26.
    Negishi M, Sugimoto Y, Ichikawa A (1993) Prostanoid receptors and their biological actions. Prog Lipid Res 32:417–434PubMedCrossRefGoogle Scholar
  27. 27.
    Kramer HJ, Stevens J, Grimminger F, Seeger W (1996) Fish oil fatty acids and human platelets: dose-dependent decrease in dienoic and increase in trienoic thromboxane generation. Biochem Pharmacol 52:1211–1217PubMedCrossRefGoogle Scholar
  28. 28.
    Fischer S, Weber PC (1985) Thromboxane (TX)A3 and prostaglandin (PG)I3 are formed in man after dietary eicosapentaenoic acid: identification and quantification by capillary gas chromatography-electron impact mass spectrometry. Biomed Mass Spectrom 12:470–476PubMedCrossRefGoogle Scholar
  29. 29.
    Wada M, DeLong CJ, Hong YH, Rieke CJ, Song I, Sidhu RS, Yuan C, Warnock M, Schmaier AH, Yokoyama C et al (2007) Enzymes and receptors of prostaglandin pathways with arachidonic acid-derived versus eicosapentaenoic acid-derived substrates and products. J Biol Chem 282:22254–22266PubMedCrossRefGoogle Scholar
  30. 30.
    Iyu D, Glenn JR, White AE, Johnson A, Heptinstall S, Fox SC (2012) The role of prostanoid receptors in mediating the effects of PGE3 on human platelet function. Thromb Haemost 107:797–799PubMedCrossRefGoogle Scholar
  31. 31.
    Needleman P, Raz A, Minkes MS, Ferrendelli JA, Sprecher H (1979) Triene prostaglandins: prostacyclin and thromboxane biosynthesis and unique biological properties. Proc Natl Acad Sci U S A 76:944–948PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kobzar G, Mardla V, Jarving I, Samel N (2001) Comparison of anti-aggregatory effects of PGI2, PGI3 and iloprost on human and rabbit platelets. Cell Physiol Biochem 11:279–284PubMedCrossRefGoogle Scholar
  33. 33.
    Hegde S, Kaushal N, Ravindra KC, Chiaro C, Hafer KT, Gandhi UH, Thompson JT, van den Heuvel JP, Kennett MJ, Hankey P et al (2011) Delta12-prostaglandin J3, an omega-3 fatty acid-derived metabolite, selectively ablates leukemia stem cells in mice. Blood 118:6909–6919PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Lefils-Lacourtablaise J, Socorro M, Geloen A, Daira P, Debard C, Loizon E, Guichardant M, Dominguez Z, Vidal H, Lagarde M et al (2013) The eicosapentaenoic acid metabolite 15-deoxy-delta(12,14)-prostaglandin J3 increases adiponectin secretion by adipocytes partly via a PPARgamma-dependent mechanism. PLoS One 8:e63997PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Jin L, Lin S, Rong H, Zheng S, Jin S, Wang R, Li Y (2011) Structural basis for iloprost as a dual peroxisome proliferator-activated receptor alpha/delta agonist. J Biol Chem 286:31473–31479PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Radmark O, Samuelsson B (2009) 5-Lipoxygenase: mechanisms of regulation. J Lipid Res 50(Suppl):S40–S45PubMedPubMedCentralGoogle Scholar
  37. 37.
    Singh RK, Gupta S, Dastidar S, Ray A (2010) Cysteinyl leukotrienes and their receptors: molecular and functional characteristics. Pharmacology 85:336–349PubMedCrossRefGoogle Scholar
  38. 38.
    Bednar M, Smith B, Pinto A, Mullane KM (1985) Neutrophil depletion suppresses 111In-labeled platelet accumulation in infarcted myocardium. J Cardiovasc Pharmacol 7:906–912PubMedCrossRefGoogle Scholar
  39. 39.
    Knauer KA, Fish JE, Adkinson NF Jr, Lichtenstein LM, Peters SP, Newball HH (1981) Platelet activation in antigen-induced bronchoconstriction. N Engl J Med 305:892–893PubMedCrossRefGoogle Scholar
  40. 40.
    Clark JD, Lin LL, Kriz RW, Ramesha CS, Sultzman LA, Lin AY, Milona N, Knopf JL (1991) A novel arachidonic acid-selective cytosolic PLA2 contains a Ca(2+)-dependent translocation domain with homology to PKC and GAP. Cell 65:1043–1051PubMedCrossRefGoogle Scholar
  41. 41.
    Woods JW, Evans JF, Ethier D, Scott S, Vickers PJ, Hearn L, Heibein JA, Charleson S, Singer II (1993) 5-lipoxygenase and 5-lipoxygenase-activating protein are localized in the nuclear envelope of activated human leukocytes. J Exp Med 178:1935–1946PubMedCrossRefGoogle Scholar
  42. 42.
    Brock TG, Paine R 3rd, Peters-Golden M (1994) Localization of 5-lipoxygenase to the nucleus of unstimulated rat basophilic leukemia cells. J Biol Chem 269:22059–22066PubMedGoogle Scholar
  43. 43.
    Dixon RA, Diehl RE, Opas E, Rands E, Vickers PJ, Evans JF, Gillard JW, Miller DK (1990) Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis. Nature 343:282–284PubMedCrossRefGoogle Scholar
  44. 44.
    Samuelsson B, Dahlen SE, Lindgren JA, Rouzer CA, Serhan CN (1987) Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 237:1171–1176PubMedCrossRefGoogle Scholar
  45. 45.
    Sjolinder M, Tornhamre S, Claesson HE, Hydman J, Lindgren J (1999) Characterization of a leukotriene C4 export mechanism in human platelets: possible involvement of multidrug resistance-associated protein 1. J Lipid Res 40:439–446PubMedGoogle Scholar
  46. 46.
    Pace-Asciak CR, Klein J, Spielberg SP (1986) Metabolism of leukotriene A4 into C4 by human platelets. Biochim Biophys Acta 877:68–74PubMedCrossRefGoogle Scholar
  47. 47.
    Sala A, Zarini S, Folco G, Murphy RC, Henson PM (1999) Differential metabolism of exogenous and endogenous arachidonic acid in human neutrophils. J Biol Chem 274:28264–28269PubMedCrossRefGoogle Scholar
  48. 48.
    Penrose JF, Spector J, Lam BK, Friend DS, Xu K, Jack RM, Austen KF (1995) Purification of human lung leukotriene C4 synthase and preparation of a polyclonal antibody. Am J Respir Crit Care Med 152:283–289PubMedCrossRefGoogle Scholar
  49. 49.
    Maugeri N, Evangelista V, Celardo A, Dell’Elba G, Martelli N, Piccardoni P, de Gaetano G, Cerletti C (1994) Polymorphonuclear leukocyte-platelet interaction: role of P-selectin in thromboxane B2 and leukotriene C4 cooperative synthesis. Thromb Haemost 72:450–456PubMedGoogle Scholar
  50. 50.
    Maclouf J, Antoine C, Henson PM, Murphy RC (1994) Leukotriene C4 formation by transcellular biosynthesis. Ann N Y Acad Sci 714:143–150PubMedCrossRefGoogle Scholar
  51. 51.
    Bigby TD, Meslier N (1989) Transcellular lipoxygenase metabolism between monocytes and platelets. J Immunol 143:1948–1954PubMedGoogle Scholar
  52. 52.
    Laidlaw TM, Kidder MS, Bhattacharyya N, Xing W, Shen S, Milne GL, Castells MC, Chhay H, Boyce JA (2012) Cysteinyl leukotriene overproduction in aspirin-exacerbated respiratory disease is driven by platelet-adherent leukocytes. Blood 119:3790–3798PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Laidlaw TM, Boyce JA (2015) Platelets in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 135:1407–1414 quiz 1415PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Powell WS, Gravel S, Khanapure SP, Rokach J (1999) Biological inactivation of 5-oxo-6,8,11,14-eicosatetraenoic acid by human platelets. Blood 93:1086–1096PubMedGoogle Scholar
  55. 55.
    Hasegawa S, Ichiyama T, Hashimoto K, Suzuki Y, Hirano R, Fukano R, Furukawa S (2010) Functional expression of cysteinyl leukotriene receptors on human platelets. Platelets 21:253–259PubMedCrossRefGoogle Scholar
  56. 56.
    Mause SF, von Hundelshausen P, Zernecke A, Koenen RR, Weber C (2005) Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arterioscler Thromb Vasc Biol 25:1512–1518PubMedCrossRefGoogle Scholar
  57. 57.
    von Hundelshausen P, Koenen RR, Sack M, Mause SF, Adriaens W, Proudfoot AE, Hackeng TM, Weber C (2005) Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium. Blood 105:924–930CrossRefGoogle Scholar
  58. 58.
    Koenen RR, von Hundelshausen P, Nesmelova IV, Zernecke A, Liehn EA, Sarabi A, Kramp BK, Piccinini AM, Paludan SR, Kowalska MA et al (2009) Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat Med 15:97–103PubMedCrossRefGoogle Scholar
  59. 59.
    von Hundelshausen P, Koenen RR, Weber C (2009) Platelet-mediated enhancement of leukocyte adhesion. Microcirculation 16:84–96CrossRefGoogle Scholar
  60. 60.
    Cummings HE, Liu T, Feng C, Laidlaw TM, Conley PB, Kanaoka Y, Boyce JA (2013) Cutting edge: leukotriene C4 activates mouse platelets in plasma exclusively through the type 2 cysteinyl leukotriene receptor. J Immunol 191:5807–5810PubMedCrossRefGoogle Scholar
  61. 61.
    Mais DE, Saussy DL Jr, Magee DE, Bowling NL (1990) Interaction of 5-HETE, 12-HETE, 15-HETE and 5,12-diHETE at the human platelet thromboxane A2/prostaglandin H2 receptor. Eicosanoids 3:121–124PubMedGoogle Scholar
  62. 62.
    Setty BN, Werner MH, Hannun YA, Stuart MJ (1992) 15-Hydroxyeicosatetraenoic acid-mediated potentiation of thrombin-induced platelet functions occurs via enhanced production of phosphoinositide-derived second messengers—sn-1,2-diacylglycerol and inositol-1,4,5-trisphosphate. Blood 80:2765–2773PubMedGoogle Scholar
  63. 63.
    Mehta P, Mehta J, Lawson D, Krop I, Letts LG (1986) Leukotrienes potentiate the effects of epinephrine and thrombin on human platelet aggregation. Thromb Res 41:731–738PubMedCrossRefGoogle Scholar
  64. 64.
    Funk CD, Furci L, FitzGerald GA (1990) Molecular cloning, primary structure, and expression of the human platelet/erythroleukemia cell 12-lipoxygenase. Proc Natl Acad Sci U S A 87:5638–5642PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Funk CD, Furci L, Fitzgerald GA (1990) Molecular cloning of the human platelet 12-lipoxygenase. Trans Assoc Am Phys 103:180–186PubMedGoogle Scholar
  66. 66.
    Yamamoto S (1992) Mammalian lipoxygenases: molecular structures and functions. Biochim Biophys Acta 1128:117–131PubMedCrossRefGoogle Scholar
  67. 67.
    Chang J, Blazek E, Kreft AF, Lewis AJ (1985) Inhibition of platelet and neutrophil phospholipase A2 by hydroxyeicosatetraenoic acids (HETES). A novel pharmacological mechanism for regulating free fatty acid release. Biochem Pharmacol 34:1571–1575PubMedCrossRefGoogle Scholar
  68. 68.
    Sekiya F, Takagi J, Sasaki K, Kawajiri K, Kobayashi Y, Sato F, Saito Y (1990) Feedback regulation of platelet function by 12S-hydroxyeicosatetraenoic acid: inhibition of arachidonic acid liberation from phospholipids. Biochim Biophys Acta 1044:165–168PubMedCrossRefGoogle Scholar
  69. 69.
    Johnson EN, Brass LF, Funk CD (1998) Increased platelet sensitivity to ADP in mice lacking platelet-type 12-lipoxygenase. Proc Natl Acad Sci U S A 95:3100–3105PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Takenaga M, Hirai A, Terano T, Tamura Y, Kitagawa H, Yoshida S (1986) Comparison of the in vitro effect of eicosapentaenoic acid (EPA)-derived lipoxygenase metabolites on human platelet function with those of arachidonic acid. Thromb Res 41:373–384PubMedCrossRefGoogle Scholar
  71. 71.
    Fonlupt P, Croset M, Lagarde M (1991) 12-HETE inhibits the binding of PGH2/TXA2 receptor ligands in human platelets. Thromb Res 63:239–248PubMedCrossRefGoogle Scholar
  72. 72.
    Calzada C, Vericel E, Lagarde M (1997) Low concentrations of lipid hydroperoxides prime human platelet aggregation specifically via cyclo-oxygenase activation. Biochem J 325(Pt 2):495–500PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Coulon L, Calzada C, Moulin P, Vericel E, Lagarde M (2003) Activation of p38 mitogen-activated protein kinase/cytosolic phospholipase A2 cascade in hydroperoxide-stressed platelets. Free Radic Biol Med 35:616–625PubMedCrossRefGoogle Scholar
  74. 74.
    Yeung J, Apopa PL, Vesci J, Stolla M, Rai G, Simeonov A, Jadhav A, Fernandez-Perez P, Maloney DJ, Boutaud O et al (2013) 12-lipoxygenase activity plays an important role in PAR4 and GPVI-mediated platelet reactivity. Thromb Haemost 110:569–581PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Yeung J, Apopa PL, Vesci J, Kenyon V, Rai G, Jadhav A, Simeonov A, Holman TR, Maloney DJ, Boutaud O et al (2012) Protein kinase C regulation of 12-lipoxygenase-mediated human platelet activation. Mol Pharmacol 81:420–430PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Yeung J, Tourdot BE, Adili R, Green AR, Freedman CJ, Fernandez-Perez P, Yu J, Holman TR, Holinstat M (2016) 12(S)-HETrE, a 12-lipoxygenase oxylipin of dihomo-gamma-linolenic acid, inhibits thrombosis via Galphas signaling in platelets. Arterioscler Thromb Vasc Biol 36:2068–2077PubMedCrossRefGoogle Scholar
  77. 77.
    Yeung J, Tourdot BE, Fernandez-Perez P, Vesci J, Ren J, Smyrniotis CJ, Luci DK, Jadhav A, Simeonov A, Maloney DJ et al (2014) Platelet 12-LOX is essential for FcgammaRIIa-mediated platelet activation. Blood 124:2271–2279PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Thomas CP, Morgan LT, Maskrey BH, Murphy RC, Kuhn H, Hazen SL, Goodall AH, Hamali HA, Collins PW, O’Donnell VB (2010) Phospholipid-esterified eicosanoids are generated in agonist-activated human platelets and enhance tissue factor-dependent thrombin generation. J Biol Chem 285:6891–6903PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Guo Y, Zhang W, Giroux C, Cai Y, Ekambaram P, Dilly AK, Hsu A, Zhou S, Maddipati KR, Liu J et al (2011) Identification of the orphan G protein-coupled receptor GPR31 as a receptor for 12-(S)-hydroxyeicosatetraenoic acid. J Biol Chem 286:33832–33840PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Hampson AJ, Grimaldi M (2002) 12-hydroxyeicosatetrenoate (12-HETE) attenuates AMPA receptor-mediated neurotoxicity: evidence for a G-protein-coupled HETE receptor. J Neurosci 22:257–264PubMedGoogle Scholar
  81. 81.
    Sun L, Xu YW, Han J, Liang H, Wang N, Cheng Y (2015) 12/15-Lipoxygenase metabolites of arachidonic acid activate PPARgamma: a possible neuroprotective effect in ischemic brain. J Lipid Res 56:502–514PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Ikei KN, Yeung J, Apopa PL, Ceja J, Vesci J, Holman TR, Holinstat M (2012) Investigations of human platelet-type 12-lipoxygenase: role of lipoxygenase products in platelet activation. J Lipid Res 53:2546–2559PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Fischer S, von Schacky C, Siess W, Strasser T, Weber PC (1984) Uptake, release and metabolism of docosahexaenoic acid (DHA, c22:6 omega 3) in human platelets and neutrophils. Biochem Biophys Res Commun 120:907–918PubMedCrossRefGoogle Scholar
  84. 84.
    Akiba S, Murata T, Kitatani K, Sato T (2000) Involvement of lipoxygenase pathway in docosapentaenoic acid-induced inhibition of platelet aggregation. Biol Pharm Bull 23:1293–1297PubMedCrossRefGoogle Scholar
  85. 85.
    Careaga MM, Sprecher H (1984) Synthesis of two hydroxy fatty acids from 7,10,13,16,19-docosapentaenoic acid by human platelets. J Biol Chem 259:14413–14417PubMedGoogle Scholar
  86. 86.
    Yeung J, Tourdot BE, Adili R, Green AR, Freedman CJ, Fernandez-Perez P, Yu J, Holman TR, Holinstat M (2016) 12-HETrE, a 12-lipoxygenase oxylipin of dihomo-gamma-linolenic acid. Inhibits Thrombosis via Galphas Signaling in Platelets. Arterioscler Thromb Vasc Biol. doi: 10.1161/ATVBAHA.116.308050
  87. 87.
    Brash AR, Boeglin WE, Chang MS (1997) Discovery of a second 15S-lipoxygenase in humans. Proc Natl Acad Sci U S A 94:6148–6152PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Shappell SB, Boeglin WE, Olson SJ, Kasper S, Brash AR (1999) 15-lipoxygenase-2 (15-LOX-2) is expressed in benign prostatic epithelium and reduced in prostate adenocarcinoma. Am J Pathol 155:235–245PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Ivanov I, Kuhn H, Heydeck D (2015) Structural and functional biology of arachidonic acid 15-lipoxygenase-1 (ALOX15). Gene 573:1–32PubMedCrossRefGoogle Scholar
  90. 90.
    Jiang WG, Watkins G, Douglas-Jones A, Mansel RE (2006) Reduction of isoforms of 15-lipoxygenase (15-LOX)-1 and 15-LOX-2 in human breast cancer. Prostaglandins Leukot Essent Fatty Acids 74:235–245PubMedCrossRefGoogle Scholar
  91. 91.
    Shureiqi I, Wu Y, Chen D, Yang XL, Guan B, Morris JS, Yang P, Newman RA, Broaddus R, Hamilton SR et al (2005) The critical role of 15-lipoxygenase-1 in colorectal epithelial cell terminal differentiation and tumorigenesis. Cancer Res 65:11486–11492PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Wong PY, Westlund P, Hamberg M, Granstrom E, Chao PH, Samuelsson B (1985) 15-Lipoxygenase in human platelets. J Biol Chem 260:9162–9165PubMedGoogle Scholar
  93. 93.
    Kim HY, Karanian JW, Salem N Jr (1990) Formation of 15-lipoxygenase product from docosahexaenoic acid (22:6w3) by human platelets. Prostaglandins 40:539–549PubMedCrossRefGoogle Scholar
  94. 94.
    Vericel E, Lagarde M (1980) 15-Hydroperoxyeicosatetraenoic acid inhibits human platelet aggregation. Lipids 15:472–474PubMedCrossRefGoogle Scholar
  95. 95.
    Vedelago HR, Mahadevappa VG (1988) Differential effects of 15-HPETE on arachidonic acid metabolism in collagen-stimulated human platelets. Biochem Biophys Res Commun 150:177–184PubMedCrossRefGoogle Scholar
  96. 96.
    Bild G, Bhat S, Axelrod B, Iatridis P (1978) Inhibition of aggregation of human platelets by 8, 15-dihydroperoxides of 5, 9, 11, 13-eicosatetraenoic and 9, 11, 13-eicosatrienoic acids. Prostaglandins 16:795–801CrossRefGoogle Scholar
  97. 97.
    Vijil C, Hermansson C, Jeppsson A, Bergstrom G, Hulten LM (2014) Arachidonate 15-lipoxygenase enzyme products increase platelet aggregation and thrombin generation. PLoS One 9:e88546PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Lannan KL, Spinelli SL, Blumberg N, Phipps RP (2017) Maresin 1 induces a novel pro-resolving phenotype in human platelets. J Thromb Haemost. doi: 10.1111/jth.13620
  99. 99.
    Yamaja Setty BN, Berger M, Stuart MJ (1987) 13-Hydroxyoctadeca-9,11-dienoic acid (13-HODE) inhibits thromboxane A2 synthesis, and stimulates 12-HETE production in human platelets. Biochem Biophys Res Commun 148:528–533PubMedCrossRefGoogle Scholar
  100. 100.
    Guichardant M, Naltachayan-Durbin S, Lagarde M (1988) Occurrence of the 15-hydroxy derivative of dihomogammalinolenic acid in human platelets and its biological effect. Biochim Biophys Acta 962:149–154PubMedCrossRefGoogle Scholar
  101. 101.
    Tloti MA, Moon DG, Weston LK, Kaplan JE (1991) Effect of 13-hydroxyoctadeca-9,11-dienoic acid (13-HODE) on thrombin induced platelet adherence to endothelial cells in vitro. Thromb Res 62:305–317PubMedCrossRefGoogle Scholar
  102. 102.
    Chen P, Vericel E, Lagarde M, Guichardant M (2011) Poxytrins, a class of oxygenated products from polyunsaturated fatty acids, potently inhibit blood platelet aggregation. FASEB J 25:382–388PubMedCrossRefGoogle Scholar
  103. 103.
    Nelson DR, Zeldin DC, Hoffman SM, Maltais LJ, Wain HM, Nebert DW (2004) Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 14:1–18PubMedCrossRefGoogle Scholar
  104. 104.
    Wu S, Moomaw CR, Tomer KB, Falck JR, Zeldin DC (1996) Molecular cloning and expression of CYP2J2, a human cytochrome P450 arachidonic acid epoxygenase highly expressed in heart. J Biol Chem 271:3460–3468PubMedCrossRefGoogle Scholar
  105. 105.
    Capdevila JH, Falck JR, Harris RC (2000) Cytochrome P450 and arachidonic acid bioactivation. Molecular and functional properties of the arachidonate monooxygenase. J Lipid Res 41:163–181PubMedGoogle Scholar
  106. 106.
    Zhu Y, Schieber EB, McGiff JC, Balazy M (1995) Identification of arachidonate P-450 metabolites in human platelet phospholipids. Hypertension 25:854–859PubMedCrossRefGoogle Scholar
  107. 107.
    Fitzpatrick FA, Ennis MD, Baze ME, Wynalda MA, McGee JE, Liggett WF (1986) Inhibition of cyclooxygenase activity and platelet aggregation by epoxyeicosatrienoic acids. Influence of stereochemistry. J Biol Chem 261:15334–15338PubMedGoogle Scholar
  108. 108.
    Balazy M (1991) Metabolism of 5,6-epoxyeicosatrienoic acid by the human platelet. Formation of novel thromboxane analogs. J Biol Chem 266:23561–23567PubMedGoogle Scholar
  109. 109.
    VanRollins M (1995) Epoxygenase metabolites of docosahexaenoic and eicosapentaenoic acids inhibit platelet aggregation at concentrations below those affecting thromboxane synthesis. J Pharmacol Exp Ther 274:798–804PubMedGoogle Scholar
  110. 110.
    Krotz F, Riexinger T, Buerkle MA, Nithipatikom K, Gloe T, Sohn HY, Campbell WB, Pohl U (2004) Membrane-potential-dependent inhibition of platelet adhesion to endothelial cells by epoxyeicosatrienoic acids. Arterioscler Thromb Vasc Biol 24:595–600PubMedCrossRefGoogle Scholar
  111. 111.
    Krotz F, Hellwig N, Burkle MA, Lehrer S, Riexinger T, Mannell H, Sohn HY, Klauss V, Pohl U (2010) A sulfaphenazole-sensitive EDHF opposes platelet-endothelium interactions in vitro and in the hamster microcirculation in vivo. Cardiovasc Res 85:542–550PubMedCrossRefGoogle Scholar
  112. 112.
    Tunaru S, Chennupati R, Nusing RM, Offermanns S (2016) Arachidonic acid metabolite 19(S)-HETE induces vasorelaxation and platelet inhibition by activating prostacyclin (IP) receptor. PLoS One 11:e0163633PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Hill E, Fitzpatrick F, Murphy RC (1992) Biological activity and metabolism of 20-hydroxyeicosatetraenoic acid in the human platelet. Br J Pharmacol 106:267–274PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Schwartzman ML, Falck JR, Yadagiri P, Escalante B (1989) Metabolism of 20-hydroxyeicosatetraenoic acid by cyclooxygenase. Formation and identification of novel endothelium-dependent vasoconstrictor metabolites. J Biol Chem 264:11658–11662PubMedGoogle Scholar
  115. 115.
    Tsai IJ, Croft KD, Puddey IB, Beilin LJ, Barden A (2011) 20-Hydroxyeicosatetraenoic acid synthesis is increased in human neutrophils and platelets by angiotensin II and endothelin-1. Am J Physiol Heart Circ Physiol 300:H1194–H1200PubMedCrossRefGoogle Scholar
  116. 116.
    Knapp HR, Miller AJ, Lawson JA (1991) Urinary excretion of diols derived from eicosapentaenoic acid during n-3 fatty acid ingestion by man. Prostaglandins 42:47–54PubMedCrossRefGoogle Scholar
  117. 117.
    Fleming I (2001) Cytochrome p450 and vascular homeostasis. Circ Res 89:753–762PubMedCrossRefGoogle Scholar
  118. 118.
    VanRollins M, Kaduce TL, Fang X, Knapp HR, Spector AA (1996) Arachidonic acid diols produced by cytochrome P-450 monooxygenases are incorporated into phospholipids of vascular endothelial cells. J Biol Chem 271:14001–14009PubMedCrossRefGoogle Scholar
  119. 119.
    Kim DH, Puri N, Sodhi K, Falck JR, Abraham NG, Shapiro J, Schwartzman ML (2013) Cyclooxygenase-2 dependent metabolism of 20-HETE increases adiposity and adipocyte enlargement in mesenchymal stem cell-derived adipocytes. J Lipid Res 54:786–793PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Pratt PF, Rosolowsky M, Campbell WB (2002) Effects of epoxyeicosatrienoic acids on polymorphonuclear leukocyte function. Life Sci 70:2521–2533PubMedCrossRefGoogle Scholar
  121. 121.
    Recchiuti A, Serhan CN (2012) Pro-resolving lipid mediators (SPMs) and their actions in regulating miRNA in novel resolution circuits in inflammation. Front Immunol 3:298PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Levy BD, Romano M, Chapman HA, Reilly JJ, Drazen J, Serhan CN (1993) Human alveolar macrophages have 15-lipoxygenase and generate 15(S)-hydroxy-5,8,11-cis-13-trans-eicosatetraenoic acid and lipoxins. J Clin Invest 92:1572–1579PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Chavis C, Vachier I, Chanez P, Bousquet J, Godard P (1996) 5(S),15(S)-dihydroxyeicosatetraenoic acid and lipoxin generation in human polymorphonuclear cells: dual specificity of 5-lipoxygenase towards endogenous and exogenous precursors. J Exp Med 183:1633–1643PubMedCrossRefGoogle Scholar
  124. 124.
    Serhan CN, Sheppard KA (1990) Lipoxin formation during human neutrophil-platelet interactions. Evidence for the transformation of leukotriene A4 by platelet 12-lipoxygenase in vitro. J Clin Invest 85:772–780PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Edenius C, Stenke L, Lindgren JA (1991) On the mechanism of transcellular lipoxin formation in human platelets and granulocytes. Eur J Biochem 199:401–409PubMedCrossRefGoogle Scholar
  126. 126.
    Borgeson E, Docherty NG, Murphy M, Rodgers K, Ryan A, O’Sullivan TP, Guiry PJ, Goldschmeding R, Higgins DF, Godson C (2011) Lipoxin A(4) and benzo-lipoxin A(4) attenuate experimental renal fibrosis. FASEB J 25:2967–2979PubMedCrossRefGoogle Scholar
  127. 127.
    Vital SA, Becker F, Holloway PM, Russell J, Perretti M, Granger DN, Gavins FN (2016) Formyl-peptide receptor 2/3/lipoxin A4 receptor regulates neutrophil-platelet aggregation and attenuates cerebral inflammation: impact for therapy in cardiovascular disease. Circulation 133:2169–2179PubMedCrossRefGoogle Scholar
  128. 128.
    Dona M, Fredman G, Schwab JM, Chiang N, Arita M, Goodarzi A, Cheng G, von Andrian UH, Serhan CN (2008) Resolvin E1, an EPA-derived mediator in whole blood, selectively counterregulates leukocytes and platelets. Blood 112:848–855PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Fredman G, Van Dyke TE, Serhan CN (2010) Resolvin E1 regulates adenosine diphosphate activation of human platelets. Arterioscler Thromb Vasc Biol 30:2005–2013PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Abdulnour RE, Dalli J, Colby JK, Krishnamoorthy N, Timmons JY, Tan SH, Colas RA, Petasis NA, Serhan CN, Levy BD (2014) Maresin 1 biosynthesis during platelet-neutrophil interactions is organ-protective. Proc Natl Acad Sci U S A 111:16526–16531PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Lagarde M, Vericel E, Liu M, Chen P, Guichardant M (2014) Structure-function relationships of non-cyclic dioxygenase products from polyunsaturated fatty acids: poxytrins as a class of bioactive derivatives. Biochimie 107(Pt A): 91-94Google Scholar
  132. 132.
    Balas L, Guichardant M, Durand T, Lagarde M (2014) Confusion between protectin D1 (PD1) and its isomer protectin DX (PDX). An overview on the dihydroxy-docosatrienes described to date. Biochimie 99:1–7PubMedCrossRefGoogle Scholar
  133. 133.
    Hong S, Gronert K, Devchand PR, Moussignac RL, Serhan CN (2003) Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J Biol Chem 278:14677–14687PubMedCrossRefGoogle Scholar
  134. 134.
    Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG (2004) Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci U S A 101:8491–8496PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of PharmacologyUniversity of MichiganAnn ArborUSA
  2. 2.Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborUSA

Personalised recommendations