Journal of Molecular Medicine

, Volume 95, Issue 6, pp 653–663 | Cite as

TGF-β1 impairs mechanosensation of human osteoblasts via HDAC6-mediated shortening and distortion of primary cilia

  • Sabrina Ehnert
  • Vrinda Sreekumar
  • Romina H. Aspera-Werz
  • Sahar O. Sajadian
  • Elke Wintermeyer
  • Gunther H. Sandmann
  • Christian Bahrs
  • Jan G. Hengstler
  • Patricio Godoy
  • Andreas K. Nussler
Original Article


Transforming growth factor β (TGF-β) is a critical regulator of bone density owing to its multiple effects on cell growth and differentiation. Recently, we have shown that TGF-β1 effectively blocks bone morphogenetic protein (BMP) induced maturation of osteoblasts by upregulating histone deacetylase (HDAC) activity. The current study aimed at investigating the effect of rhTGF-β1 treatment on the expression of specific HDACs and their cellular effects, e.g., microtubule structures (primary cilia) and mechanosensation. Exposure to TGF-β1 most significantly induced expression of HDAC6 both on gene and protein level. Being most abundant in the cytoplasm HDAC6 effectively deacetylates microtubule structures. Thus, TGF-β1-induced expression of HDAC6 led to deformation and shortening of primary cilia as well as to reduced numbers of ciliated cells. Primary cilia are described to sense mechanical stimuli. Thus, fluid flow was applied to the cells, which stimulated osteoblast function (AP activity and matrix mineralization). Compromised primary cilia in TGF-β1-treated cells were associated with reduced osteogenic function, despite exposure to fluid flow conditions. Chemical inhibition of HDAC6 with Tubacin restored primary cilium structure and length. These cells showed improved osteogenic function especially under fluid flow conditions. Summarizing our results, TGF-β1 impairs human osteoblast maturation partially via HDAC6-mediated distortion and/or shortening of primary cilia. This knowledge opens up new treatment options for trauma patients with chronically elevated TGF-β1-levels (e.g., diabetics), which frequently suffer from delayed fracture healing despite adequate mechanical stimulation.

Key messages

  • Exposure to TGF-β1 induces expression of HDAC6 in human osteoblasts.

  • TGF-β1 exposed human osteoblasts show less and distorted primary cilia.

  • TGF-β1 exposed human osteoblasts are less sensitive towards mechanical stimulation.

  • Mechanosensation can be recovered by HDAC6 inhibitor Tubacin in human osteoblasts.


Primary human osteoblasts (phOBs) Transforming growth factor β (TGF-β) Histone deacetylase 6 (HDAC6) Primary cilia 


  1. 1.
    Centrella M, McCarthy TL, Canalis E (1988) Skeletal tissue and transforming growth factor beta. FASEB J 2:3066–3073PubMedGoogle Scholar
  2. 2.
    Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700CrossRefPubMedGoogle Scholar
  3. 3.
    Massague J, Weis-Garcia F (1996) Serine/threonine kinase receptors: mediators of transforming growth factor beta family signals. Cancer Surv 27:41–64PubMedGoogle Scholar
  4. 4.
    Geiser AG, Zeng QQ, Sato M, Helvering LM, Hirano T, Turner CH (1998) Decreased bone mass and bone elasticity in mice lacking the transforming growth factor-beta1 gene. Bone 23:87–93CrossRefPubMedGoogle Scholar
  5. 5.
    Noda M, Camilliere JJ (1989) In vivo stimulation of bone formation by transforming growth factor-beta. Endocrinology 124:2991–2994CrossRefPubMedGoogle Scholar
  6. 6.
    Joyce ME, Roberts AB, Sporn MB, Bolander ME (1990) Transforming growth factor-beta and the initiation of chondrogenesis and osteogenesis in the rat femur. J Cell Biol 110:2195–2207CrossRefPubMedGoogle Scholar
  7. 7.
    Erlebacher A, Derynck R (1996) Increased expression of TGF-beta 2 in osteoblasts results in an osteoporosis-like phenotype. J Cell Biol 132:195–210CrossRefPubMedGoogle Scholar
  8. 8.
    Filvaroff E, Erlebacher A, Ye J, Gitelman SE, Lotz J, Heillman M, Derynck R (1999) Inhibition of TGF-beta receptor signaling in osteoblasts leads to decreased bone remodeling and increased trabecular bone mass. Development 126:4267–4279PubMedGoogle Scholar
  9. 9.
    Mohammad KS, Chen CG, Balooch G, Stebbins E, McKenna CR, Davis H, Niewolna M, Peng XH, Nguyen DH, Ionova-Martin SS et al (2009) Pharmacologic inhibition of the TGF-beta type I receptor kinase has anabolic and anti-catabolic effects on bone. PLoS One 4:e5275CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ehnert S, Freude T, Ihle C, Mayer L, Braun B, Graeser J, Flesch I, Stockle U, Nussler AK, Pscherer S (2015) Factors circulating in the blood of type 2 diabetes mellitus patients affect osteoblast maturation—description of a novel in vitro model. Exp Cell Res 332:247–258CrossRefPubMedGoogle Scholar
  11. 11.
    Nussler AK, Wildemann B, Freude T, Litzka C, Soldo P, Friess H, Hammad S, Hengstler JG, Braun KF, Trak-Smayra V et al (2014) Chronic CCl4 intoxication causes liver and bone damage similar to the human pathology of hepatic osteodystrophy: a mouse model to analyse the liver-bone axis. Arch Toxicol 88:997–1006CrossRefPubMedGoogle Scholar
  12. 12.
    Pscherer S, Freude T, Forst T, Nussler AK, Braun KF, Ehnert S (2013) Anti-diabetic treatment regulates pro-fibrotic TGF-beta serum levels in type 2 diabetics. Diabetol Metab Syndr 5:48CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ehnert S, Baur J, Schmitt A, Neumaier M, Lucke M, Dooley S, Vester H, Wildemann B, Stockle U, Nussler AK (2010) TGF-beta1 as possible link between loss of bone mineral density and chronic inflammation. PLoS One 5:e14073CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zimmermann G, Henle P, Kusswetter M, Moghaddam A, Wentzensen A, Richter W, Weiss S (2005) TGF-beta1 as a marker of delayed fracture healing. Bone 36:779–785CrossRefPubMedGoogle Scholar
  15. 15.
    Grafe I, Yang T, Alexander S, Homan EP, Lietman C, Jiang MM, Bertin T, Munivez E, Chen Y, Dawson B et al (2014) Excessive transforming growth factor-beta signaling is a common mechanism in osteogenesis imperfecta. Nat Med 20:670–675CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhen G, Wen C, Jia X, Li Y, Crane JL, Mears SC, Askin FB, Frassica FJ, Chang W, Yao J et al (2013) Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med 19:704–712CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ehnert S, Zhao J, Pscherer S, Freude T, Dooley S, Kolk A, Stockle U, Nussler AK, Hube R (2012) Transforming growth factor beta1 inhibits bone morphogenic protein (BMP)-2 and BMP-7 signaling via upregulation of Ski-related novel protein N (SnoN): possible mechanism for the failure of BMP therapy? BMC Med 10:101CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Deheuninck J, Luo K (2009) Ski and SnoN, potent negative regulators of TGF-beta signaling. Cell Res 19:47–57CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Maroni P, Brini AT, Arrigoni E, de Girolamo L, Niada S, Matteucci E, Bendinelli P, Desiderio MA (2012) Chemical and genetic blockade of HDACs enhances osteogenic differentiation of human adipose tissue-derived stem cells by oppositely affecting osteogenic and adipogenic transcription factors. Biochem Biophys Res Commun 428:271–277CrossRefPubMedGoogle Scholar
  21. 21.
    Saito T, Nishida K, Furumatsu T, Yoshida A, Ozawa M, Ozaki T (2013) Histone deacetylase inhibitors suppress mechanical stress-induced expression of RUNX-2 and ADAMTS-5 through the inhibition of the MAPK signaling pathway in cultured human chondrocytes. Osteoarthr Cartil 21:165–174CrossRefPubMedGoogle Scholar
  22. 22.
    Wang JH, Shih KS, Wu YW, Wang AW, Yang CR (2013) Histone deacetylase inhibitors increase microRNA-146a expression and enhance negative regulation of interleukin-1beta signaling in osteoarthritis fibroblast-like synoviocytes. Osteoarthr Cartil 21:1987–1996CrossRefPubMedGoogle Scholar
  23. 23.
    Liu T, Hou L, Zhao Y, Huang Y (2015) Epigenetic silencing of HDAC1 by miR-449a upregulates Runx2 and promotes osteoblast differentiation. Int J Mol Med 35:238–246PubMedGoogle Scholar
  24. 24.
    Lee HW, Suh JH, Kim AY, Lee YS, Park SY, Kim JB (2006) Histone deacetylase 1-mediated histone modification regulates osteoblast differentiation. Mol Endocrinol 20:2432–2443CrossRefPubMedGoogle Scholar
  25. 25.
    Schroeder TM, Kahler RA, Li X, Westendorf JJ (2004) Histone deacetylase 3 interacts with runx2 to repress the osteocalcin promoter and regulate osteoblast differentiation. J Biol Chem 279:41998–42007CrossRefPubMedGoogle Scholar
  26. 26.
    Jensen ED, Schroeder TM, Bailey J, Gopalakrishnan R, Westendorf JJ (2008) Histone deacetylase 7 associates with Runx2 and represses its activity during osteoblast maturation in a deacetylation-independent manner. J Bone Miner Res 23:361–372CrossRefPubMedGoogle Scholar
  27. 27.
    Fu Y, Zhang P, Ge J, Cheng J, Dong W, Yuan H, Du Y, Yang M, Sun R, Jiang H (2014) Histone deacetylase 8 suppresses osteogenic differentiation of bone marrow stromal cells by inhibiting histone H3K9 acetylation and RUNX2 activity. Int J Biochem Cell Biol 54:68–77CrossRefPubMedGoogle Scholar
  28. 28.
    Westendorf JJ, Zaidi SK, Cascino JE, Kahler R, van Wijnen AJ, Lian JB, Yoshida M, Stein GS, Li X (2002) Runx2 (Cbfa1, AML-3) interacts with histone deacetylase 6 and represses the p21(CIP1/WAF1) promoter. Mol Cell Biol 22:7982–7992CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kang JS, Alliston T, Delston R, Derynck R (2005) Repression of Runx2 function by TGF-beta through recruitment of class II histone deacetylases by Smad3. EMBO J 24:2543–2555CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bertos NR, Wang AH, Yang XJ (2001) Class II histone deacetylases: structure, function, and regulation. Biochem Cell Biol 79:243–252CrossRefPubMedGoogle Scholar
  31. 31.
    Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417:455–458CrossRefPubMedGoogle Scholar
  32. 32.
    DeRouen MC, Oro AE (2009) The primary cilium: a small yet mighty organelle. J Invest Dermatol 129:264–265CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Veland IR, Awan A, Pedersen LB, Yoder BK, Christensen ST (2009) Primary cilia and signaling pathways in mammalian development, health and disease. Nephron Physiol 111:p39–p53CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Gardner K, Arnoczky SP, Lavagnino M (2011) Effect of in vitro stress-deprivation and cyclic loading on the length of tendon cell cilia in situ. J Orthop Res 29:582–587CrossRefPubMedGoogle Scholar
  35. 35.
    McGlashan SR, Knight MM, Chowdhury TT, Joshi P, Jensen CG, Kennedy S, Poole CA (2010) Mechanical loading modulates chondrocyte primary cilia incidence and length. Cell Biol Int 34:441–446CrossRefPubMedGoogle Scholar
  36. 36.
    Delaine-Smith RM, Sittichokechaiwut A, Reilly GC (2014a) Primary cilia respond to fluid shear stress and mediate flow-induced calcium deposition in osteoblasts. FASEB J 28:430–439CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Malone AM, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T, Jacobs CR (2007) Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci U S A 104:13325–13330CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Qiu N, Xiao Z, Cao L, Buechel MM, David V, Roan E, Quarles LD (2012) Disruption of Kif3a in osteoblasts results in defective bone formation and osteopenia. J Cell Sci 125:1945–1957CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Xiao Z, Dallas M, Qiu N, Nicolella D, Cao L, Johnson M, Bonewald L, Quarles LD (2011) Conditional deletion of Pkd1 in osteocytes disrupts skeletal mechanosensing in mice. FASEB J 25:2418–2432CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Temiyasathit S, Tang WJ, Leucht P, Anderson CT, Monica SD, Castillo AB, Helms JA, Stearns T, Jacobs CR (2012) Mechanosensing by the primary cilium: deletion of Kif3A reduces bone formation due to loading. PLoS One 7:e33368CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Sreekumar V, Aspera-Werz RH, Tendulkar G, Reumann MK, Freude T, Breitkopf-Heinlein K, Dooley S, Pscherer S, Ochs BG, Flesch I et al (2016) BMP9 a possible alternative drug for the recently withdrawn BMP7? New perspectives for (re-)implementation by personalized medicine. Arch ToxicolGoogle Scholar
  42. 42.
    Dummer A, Poelma C, DeRuiter MC, Goumans MJ, Hierck BP (2016) Measuring the primary cilium length: improved method for unbiased high-throughput analysis. Cilia 5:7CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Schemies J, Sippl W, Jung M (2009) Histone deacetylase inhibitors that target tubulin. Cancer Lett 280:222–232CrossRefPubMedGoogle Scholar
  44. 44.
    Shan B, Yao TP, Nguyen HT, Zhuo Y, Levy DR, Klingsberg RC, Tao H, Palmer ML, Holder KN, Lasky JA (2008) Requirement of HDAC6 for transforming growth factor-beta1-induced epithelial-mesenchymal transition. J Biol Chem 283:21065–21073CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Deskin B, Lasky J, Zhuang Y, Shan B (2016) Requirement of HDAC6 for activation of Notch1 by TGF-beta1. Sci Rep 6:31086CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Gu S, Liu Y, Zhu B, Ding K, Yao TP, Chen F, Zhan L, Xu P, Ehrlich M, Liang T et al (2016) Loss of alpha-tubulin acetylation is associated with TGF-beta-induced epithelial-mesenchymal transition. J Biol Chem 291:5396–5405CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Malone AMD, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T, Jacobs CR (2008) Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism (vol 104, pg 13325, 2007). Proc Natl Acad Sci U S A 105:825–825Google Scholar
  48. 48.
    Nakakura T, Asano-Hoshino A, Suzuki T, Arisawa K, Tanaka H, Sekino Y, Kiuchi Y, Kawai K, Hagiwara H (2015) The elongation of primary cilia via the acetylation of alpha-tubulin by the treatment with lithium chloride in human fibroblast KD cells. Medical Molecular Morphology 48:44–53CrossRefPubMedGoogle Scholar
  49. 49.
    Delaine-Smith RM, Sittichokechaiwut A, Reilly GC (2014b) Primary cilia respond to fluid shear stress and mediate flow-induced calcium deposition in osteoblasts. FASEB J 28:430–439CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ran J, Yang Y, Li D, Liu M, Zhou J (2015) Deacetylation of alpha-tubulin and cortactin is required for HDAC6 to trigger ciliary disassembly. Sci Rep 5:12917CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Zhang Y, Kwon S, Yamaguchi T, Cubizolles F, Rousseaux S, Kneissel M, Cao C, Li N, Cheng HL, Chua K et al (2008) Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally. Mol Cell Biol 28:1688–1701CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Xu S, De Veirman K, Evans H, Santini GC, Vande Broek I, Leleu X, De Becker A, Van Camp B, Croucher P, Vanderkerken K et al (2013a) Effect of the HDAC inhibitor vorinostat on the osteogenic differentiation of mesenchymal stem cells in vitro and bone formation in vivo. Acta Pharmacol Sin 34:699–709CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    McGee-Lawrence ME, McCleary-Wheeler AL, Secreto FJ, Razidlo DF, Zhang M, Stensgard BA, Li X, Stein GS, Lian JB, Westendorf JJ (2011) Suberoylanilide hydroxamic acid (SAHA; vorinostat) causes bone loss by inhibiting immature osteoblasts. Bone 48:1117–1126CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    McGee-Lawrence ME, Westendorf JJ (2013) Reply to vorinostat induced bone loss in mice. Bone 57:531–532CrossRefPubMedGoogle Scholar
  55. 55.
    Xu S, De Veirman K, Vanderkerken K, Van Riet I (2013b) Vorinostat-induced bone loss might be related to drug toxicity. Bone 57:384–385CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Sabrina Ehnert
    • 1
  • Vrinda Sreekumar
    • 1
  • Romina H. Aspera-Werz
    • 1
  • Sahar O. Sajadian
    • 1
  • Elke Wintermeyer
    • 1
  • Gunther H. Sandmann
    • 1
  • Christian Bahrs
    • 1
  • Jan G. Hengstler
    • 2
  • Patricio Godoy
    • 2
  • Andreas K. Nussler
    • 1
  1. 1.Siegfried Weller Institute for trauma research at the BG Trauma CenterEberhard Karls Universität TübingenTübingenGermany
  2. 2.IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University DortmundDortmundGermany

Personalised recommendations