Journal of Molecular Medicine

, Volume 95, Issue 6, pp 665–670 | Cite as

Gain-of-function EGLN1 prolyl hydroxylase (PHD2 D4E:C127S) in combination with EPAS1 (HIF-2α) polymorphism lowers hemoglobin concentration in Tibetan highlanders

  • Tsewang Tashi
  • N. Scott Reading
  • Tanna Wuren
  • Xu Zhang
  • Lorna G. Moore
  • Hao Hu
  • Feng Tang
  • Anna Shestakova
  • Felipe Lorenzo
  • Tatiana Burjanivova
  • Parvaiz Koul
  • Prasenjit Guchhait
  • Carl T. Wittwer
  • Colleen G. Julian
  • Binal Shah
  • Chad D. Huff
  • Victor R. Gordeuk
  • Josef T. Prchal
  • RiLi Ge
Original Article

Abstract

Tibetans have lived at high altitude for generations and are thought to be genetically adapted to hypoxic environments. Most are protected from hypoxia-induced polycythemia, and a haplotype of EPAS1, encoding hypoxia-inducible factor (HIF-2α), has been associated with lower hemoglobin levels. We earlier reported a Tibetan-specific EGLN1 haplotype encoding PHD2 which abrogates HIF augmentation in hypoxia. We genotyped 347 Tibetan individuals from varying altitudes for both the Tibetan-specific EGLN1 haplotype and 10 candidate SNPs in the EPAS1 haplotype and correlated their association with hemoglobin levels. The effect of the EGLN1 haplotype on hemoglobin exhibited age dependency at low altitude, while at higher altitudes, it showed a trend to lower hemoglobin levels in the presence of the Tibetan-selected EPAS1 rs142764723 C/C allele. The observed gene-environment and gene-gene interactions and the moderate effect of the EGLN1 and EPAS1 haplotypes on hemoglobin indicate that other modifiers exist. It remains to be determined whether a blunting of erythropoiesis or other physiological consequences of HIF downregulation are the primary drivers of these genetic adaptations among Tibetans.

Key message

  • Most Tibetans are protected from polycythemia while living in high altitude.

  • An EGLN1 co-adapted haplotype, EGLN1 c.12C>G, c.380G>C is uniquely Tibetan.

  • The Tibetan EPAS1 haplotype has introgressed from the Denisovan genome.

  • While EGLN1 and EPAS1 genotypes lower Hb, this study indicates additional Hb modifiers.

Keywords

High altitude Genetic adaptation Polycythemia Hypoxia High-resolution melting assay 

Supplementary material

109_2017_1519_MOESM1_ESM.pdf (841 kb)
ESM 1(PDF 841 kb)

References

  1. 1.
    West JB (1996) Prediction of barometric pressures at high altitude with the use of model atmospheres. J Appl Physiol (1985) 81(4):1850–1854Google Scholar
  2. 2.
    Beall CM, Blangero J, Williams-Blangero S, Goldstein MC (1994) Major gene for percent of oxygen saturation of arterial hemoglobin in Tibetan highlanders. Am J Phys Anthropol 95(3):271–276CrossRefPubMedGoogle Scholar
  3. 3.
    Moore LG, Niermeyer S, Zamudio S (1998) Human adaptation to high altitude: regional and life-cycle perspectives. Am J Phys Anthropol Suppl 27:25–64CrossRefGoogle Scholar
  4. 4.
    Wu T, Wang X, Wei C, Cheng H, Wang X, Li Y, Ge D, Zhao H, Young P, Li G et al (2005) Hemoglobin levels in Qinghai-Tibet: different effects of gender for Tibetans vs. Han. J Appl Physiol (1985) 98(2):598–604CrossRefGoogle Scholar
  5. 5.
    Beall CM, Brittenham GM, Strohl KP, Blangero J, Williams-Blangero S, Goldstein MC, Decker MJ, Vargas E, Villena M, Soria R et al (1998) Hemoglobin concentration of high-altitude Tibetans and Bolivian Aymara. Am J Phys Anthropol 106(3):385–400CrossRefPubMedGoogle Scholar
  6. 6.
    Winslow RM, Chapman KW, Gibson CC, Samaja M, Monge CC, Goldwasser E, Sherpa M, Blume FD, Santolaya R (1989) Different hematologic responses to hypoxia in Sherpas and Quechua Indians. J Appl Physiol (1985) 66 (4):1561–1569Google Scholar
  7. 7.
    Simonson TS, McClain DA, Jorde LB, Prchal JT (2012) Genetic determinants of Tibetan high-altitude adaptation. Hum Genet 131(4):527–533CrossRefPubMedGoogle Scholar
  8. 8.
    Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZX, Pool JE, Xu X, Jiang H, Vinckenbosch N, Korneliussen TS et al (2010) Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329(5987):75–78CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Beall CM, Cavalleri GL, Deng L, Elston RC, Gao Y, Knight J, Li C, Li JC, Liang Y, McCormack M et al (2010) Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci U S A 107(25):11459–11464CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bigham A, Bauchet M, Pinto D, Mao X, Akey JM, Mei R, Scherer SW, Julian CG, Wilson MJ, Lopez Herraez D et al (2010) Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data. PLoS Genet 6(9):e1001116CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Huerta-Sanchez E, Jin X, Asan, Bianba Z, Peter BM, Vinckenbosch N, Liang Y, Yi X, He M, Somel M et al (2014) Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512(7513):194–197CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Semenza GL (2014) Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol 9:47–71CrossRefPubMedGoogle Scholar
  13. 13.
    Kaelin WG Jr, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30(4):393–402CrossRefPubMedGoogle Scholar
  14. 14.
    Lorenzo FR, Simonson TS, Yang Y, Ge RL, Prchal JT (2012) A novel PHD2 mutation associated with tibetan genetic adaptation to high altitude hypoxia. In: American Society of Hematology, Orlando, FLGoogle Scholar
  15. 15.
    Lorenzo FR, Huff C, Myllymaki M, Olenchock B, Swierczek S, Tashi T, Gordeuk V, Wuren T, Ri-Li G, McClain DA et al (2014) A genetic mechanism for Tibetan high-altitude adaptation. Nat Genet 46(9):951–956CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Liew M, Pryor R, Palais R, Meadows C, Erali M, Lyon E, Wittwer C (2004) Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin Chem 50(7):1156–1164CrossRefPubMedGoogle Scholar
  17. 17.
    Moore LG, Young D, McCullough RE, Droma T, Zamudio S (2001) Tibetan protection from intrauterine growth restriction (IUGR) and reproductive loss at high altitude. Am J Hum Biol 13(5):635–644CrossRefPubMedGoogle Scholar
  18. 18.
    Torroni A, Miller JA, Moore LG, Zamudio S, Zhuang J, Droma T, Wallace DC (1994) Mitochondrial DNA analysis in Tibet: implications for the origin of the Tibetan population and its adaptation to high altitude. Am J Phys Anthropol 93(2):189–199CrossRefPubMedGoogle Scholar
  19. 19.
    Hu H ST, Glusman G, Roach JC, Cavalleri G, Brunkow ME, McCormack M, Petousi N, Lorenzo FL, Gelinas R, Jorde LB et al. (2013) Insights on the evolutionary history of Tibetans from whole-genome sequence data. In: Annual Cold Spring Harbor Biology of Genomes Meeting, Cold Spring Harbor, NYGoogle Scholar
  20. 20.
    Grossman S, Shlyakhter I, Karlsson E, Byrne E, Morales S et al (2010) A composite of multiple signals distinguishes causal variants in regions of positive selection. Science 327(5967):883–886CrossRefPubMedGoogle Scholar
  21. 21.
    Cox DR (2006) Principles of statistical inference. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  22. 22.
    R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  23. 23.
    Ravasi G, Pelucchi S, Greni F, Mariani R, Giuliano A, Parati G, Silvestri L, Piperno A (2014) Circulating factors are involved in hypoxia-induced hepcidin suppression. Blood Cells Mol Dis 53(4):204–210CrossRefPubMedGoogle Scholar
  24. 24.
    Talbot NP, Lakhal S, Smith TG, Privat C, Nickol AH, Rivera-Ch M, Leon-Velarde F, Dorrington KL, Mole DR, Robbins PA (2012) Regulation of hepcidin expression at high altitude. Blood 119(3):857–860CrossRefPubMedGoogle Scholar
  25. 25.
    Leon-Velarde F, Maggiorini M, Reeves JT, Aldashev A, Asmus I, Bernardi L, Ge RL, Hackett P, Kobayashi T, Moore LG et al (2005) Consensus statement on chronic and subacute high altitude diseases. High Alt Med Biol 6(2):147–157CrossRefPubMedGoogle Scholar
  26. 26.
    Niermeyer S, Tobin A, Schoen E, Carter T, Klein JD (2015) A new commitment to newborn survival. Pediatrics. doi:10.1542/peds.2014-3185 Google Scholar
  27. 27.
    Gonzales GF, Steenland K, Tapia V (2009) Maternal hemoglobin level and fetal outcome at low and high altitudes. Am J Physiol Regul Integr Comp Physiol 297(5):R1477–R1485CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Tsewang Tashi
    • 1
  • N. Scott Reading
    • 1
    • 2
  • Tanna Wuren
    • 3
  • Xu Zhang
    • 4
  • Lorna G. Moore
    • 5
  • Hao Hu
    • 6
  • Feng Tang
    • 3
  • Anna Shestakova
    • 2
  • Felipe Lorenzo
    • 1
  • Tatiana Burjanivova
    • 1
    • 7
  • Parvaiz Koul
    • 8
  • Prasenjit Guchhait
    • 9
  • Carl T. Wittwer
    • 2
  • Colleen G. Julian
    • 5
  • Binal Shah
    • 4
  • Chad D. Huff
    • 6
  • Victor R. Gordeuk
    • 4
  • Josef T. Prchal
    • 1
    • 2
    • 10
    • 11
  • RiLi Ge
    • 3
  1. 1.Division of HematologyUniversity of UtahSalt Lake CityUSA
  2. 2.Department of Pathology and ARUP LaboratoriesUniversity of UtahSalt Lake CityUSA
  3. 3.Research Center for High-Altitude MedicineQinghai UniversityXiningChina
  4. 4.Division of Hematology and Oncology, Department of MedicineUniversity of Illinois at ChicagoChicagoUSA
  5. 5.Departments of Medicine and Obstetrics/GynecologyUniversity of Colorado DenverAuroraUSA
  6. 6.MD Anderson Cancer CenterUniversity of TexasHoustonUSA
  7. 7.Department of Molecular Biology, Jessenius Faculty of Medicine in MartinComenius University in BratislavaBratislavaSlovakia
  8. 8.Sher-i-Kashmir Institute of Medical SciencesSrinagarIndia
  9. 9.Regional Centre for BiotechnologyFaridabadIndia
  10. 10.Department of Pathophysiology and 1st Department of Medicine, 1st Faculty MedicineCharles University in PraguePragueCzech Republic
  11. 11.Hematology, SOM 5C310University of Utah School of MedicineSalt Lake CityUSA

Personalised recommendations