Journal of Molecular Medicine

, Volume 95, Issue 4, pp 417–429 | Cite as

The HIF-1 antagonist acriflavine: visualization in retina and suppression of ocular neovascularization

  • Mingbing Zeng
  • Jikui Shen
  • Yuanyuan Liu
  • Lucy Yang Lu
  • Kun Ding
  • Seth D. Fortmann
  • Mahmood Khan
  • Jiangxia Wang
  • Sean F. Hackett
  • Gregg L. Semenza
  • Peter A. Campochiaro
Original Article


Acriflavine, a fluorescent drug previously used for bacterial and trypanosomal infections, reduces hypoxia-inducible factor-1 (HIF-1) and HIF-2 transcriptional activity. In mice with oxygen-induced ischemic retinopathy, intraocular or intraperitoneal injections of acriflavine caused dose-dependent suppression of retinal neovascularization (NV) and significantly reduced expression of HIF-1-responsive genes. Intraocular injection of 100 ng caused inner retina fluorescence within 1 h that was seen throughout the entire retina between 1 and 5 days, and at 7 days after injection, strongly suppressed choroidal NV at Bruch’s membrane rupture sites. After suprachoroidal injection of 300 ng in rats, there was retinal fluorescence in the quadrant of the injection at 1 h that spread throughout the entire retina and choroid by 1 day, was detectable for 5 days, and dramatically reduced choroidal NV 14 days after rupture of Bruch’s membrane. After topical administration of acriflavine in mice, fluorescence was seen in the retina and retinal pigmented epithelium within 5 min and was detectable for 6–12 h. Administration of 0.5% drops to the cornea twice a day significantly reduced choroidal NV in mice. Electroretinographic b-wave amplitudes were normal 7 days after intravitreous injection of 100 ng of acriflavine in mice, showed mild threshold reductions at highest stimulus intensities after injection of 250 ng, and more extensive changes after injection of 500 ng. These data provide additional evidence for an important role for HIF-1 in retinal and choroidal NV and suggest that acriflavine can target HIF-1 through a variety of modes of administration and has good potential to provide a novel therapy for retinal and choroidal vascular diseases.

Key message

  • Acriflavine, an inhibitor of HIF-1, suppresses retinal and choroidal neovascularization.

  • HIF-1 plays a critical role in ocular neovascularization.

  • Acriflavine’s fluorescence provides a mean to track its entry and exit from the retina.

  • Acriflavine has therapeutic potential for the treatment of ocular neovascularization.


Age-related macular degeneration Diabetic retinopathy Ischemia Suprachoroidal injection Vascular endothelial growth factor 



This study is supported by EY012609 from the National Eye Institute.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Klein R, Klein BE, Linton KL (1992) Prevalence of age-related maculopathy. The Beaver Dam Eye Study Ophthalmology 99:933–943PubMedGoogle Scholar
  2. 2.
    Klein R, Klein B (1995) Vision disorders in diabetes. In: Group NDD (ed) Diabetes in America National Institutes of Health. Washington, D.C., pp. 293–330Google Scholar
  3. 3.
    Ozaki H, Yu A, Della N, Ozaki K, Luna JD, Yamada H, Hackett SF, Okamoto N, Zack DJ, Semenza GL et al (1999) Hypoxia inducible factor-1a is increased in ischemic retina: temporal and spatial correlation with VEGF expression. Invest Ophthalmol Vis Sci 40:182–189PubMedGoogle Scholar
  4. 4.
    Kelly BD, Hackett SF, Hirota K, Oshima Y, Cai Z, Berg-Dixon S, Rowan A, Yan Z, Campochiaro PA, Semenza GL (2003) Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res 93:1074–1081CrossRefPubMedGoogle Scholar
  5. 5.
    Vinores SA, Xiao WH, Aslam S, Shen J, Oshima Y, Nambu H, Liu H, Carmeliet P, Campochiaro PA (2006) Implication of the hypoxia response element of the VEGF promoter in mouse models of retinal and choroidal neovascularization, but not retinal vascular development. J Cell Physiol 206:749–758CrossRefPubMedGoogle Scholar
  6. 6.
    Yoshida T, Zhang H, Iwase T, Shen J, Semenza G, Campochiaro PA (2010) Digoxin inhibits retinal ischemia-induced HIF-1alpha expression and ocular neovascularization. FASEB J 24:1759–1767CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Iwase T, Fu J, Yoshida T, Muramatusu D, Miki A, Hashida N, Lu L, Oveson B, Lime e Silva R, Seidel C et al (2013) Sustained delivery of a HIF-1 antagonist for ocular neovascularization. J Control Release 172:625–633CrossRefPubMedGoogle Scholar
  8. 8.
    Campochiaro PA (2015) Molecular pathogenesis of retinal and choroidal vascular diseases. Prog Retin Eye Res 49:67–81CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, Kim RY, Group MS (2006) Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 355:1419–1431CrossRefPubMedGoogle Scholar
  10. 10.
    Heier JS, Brown DM, Chong V, Korobelnik JF, Kaiser PK, Nguyen QD, Kirchhof B, Ho A, Ogura Y, Yancopoulos GD et al (2012) Intravitreal Aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology 119:2537–2548CrossRefPubMedGoogle Scholar
  11. 11.
    Nguyen QD, Tatlipinar S, Shah SM, Haller JA, Quinlan E, Sung J, Zimmer-Galler I, Do DV, Campochiaro PA (2006) Vascular endothelial growth factor is a critical stimulus for diabetic macular edema. Am J Ophthalmol 142:961–969CrossRefPubMedGoogle Scholar
  12. 12.
    Nguyen QD, Brown DM, Marcus DM, Boyer DS, Patel S, Feiner L, Gibson A, Sy J, Rundle AC, Hopkins JJ et al (2012) Ranibizumab for diabetic macular edema. Results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology 119:789–801CrossRefPubMedGoogle Scholar
  13. 13.
    Campochiaro PA, Hafiz G, Shah SM, Nguyen QD, Ying H, Do DV, Quinlan E, Zimmer-Galler I, Haller JA, Solomon S et al (2008) Ranibizumab for macular edema due to retinal vein occlusions; implication of VEGF as a critical stimulator. Molec Ther 16:791–799CrossRefGoogle Scholar
  14. 14.
    Campochiaro PA, Heier JS, Feiner L, Gray S, Saroj N, Rundle AC, Murahashi WY, Rubio RG, Group BS (2010) Ranibizumab for macular edema following branch retinal vein occlusion: 6-month primary endpoint results of a phase III study. Ophthalmology 117:1102–1112CrossRefPubMedGoogle Scholar
  15. 15.
    Brown DM, Campochiaro PA, Singh RP, Gray S, Rundle AC, Li Z, Rubio RG, Murahashi WY, Group CS (2010) Efficacy and safety of ranibizumab in the treatment of macular edema secondary to central retinal vein occlusion:6-month results of the phase III CRUISE study. Ophthalmology 117:1124–1133CrossRefPubMedGoogle Scholar
  16. 16.
    Ip MS, Domalpally A, Hopkins JJ, Wong P, Ehrlich JS (2012) Long-term effects of ranibizumab on diabetic retinopathy severity and progression. Arch Ophthalmol 130:1145–1152CrossRefPubMedGoogle Scholar
  17. 17.
    Jo N, Mailhos C, Ju M, Cheung E, Bradley J, Nishijima K, Robinson GS, Adamis AP, Shima DT (2006) Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization. Am J Pathol 168:2036–2053CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dong A, Seidel C, Snell D, Ekawardhani S, Ahlskog JK, Baumann M, Shen J, Iwase T, Tian J, Stevens R et al (2014) Antagonism of PDGF-BB suppresses subretinal neovascularization and enhances the effects of blocking VEGF-A. Angiogenesis 17:553–562PubMedGoogle Scholar
  19. 19.
    Hackett SF, Ozaki H, Strauss RW, Wahlin K, Suri C, Maisonpierre P, Yancopoulos G, Campochiaro PA (2000) Angiopoietin 2 expression in the retina: upregulation during physiologic and pathologic neovascularization. J Cell Physiol 184:275–284CrossRefPubMedGoogle Scholar
  20. 20.
    Hackett SF, Wiegand SJ, Yancopoulos G, Campochiaro P (2002) Angiopoietin-2 plays an important role in retinal angiogenesis. J Cell Physiol 192:182–187CrossRefPubMedGoogle Scholar
  21. 21.
    Gale NW, Thurston G, Hackett SF, Renard R, Wang Q, McClain J, Martin C, Witte C, Witte M, Jackson D et al (2002) Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Devel Cell 3:411–423CrossRefGoogle Scholar
  22. 22.
    Oshima Y, Oshima S, Nambu H, Kachi S, Takahashi K, Umeda N, Shen J, Dong A, Apte RS, Duh E et al (2005) Different effects of angiopoietin 2 in different vascular beds in the eye; new vessels are most sensitive. FASEB J 19:963–965PubMedGoogle Scholar
  23. 23.
    Lima e Silva R, Shen J, Hackett SF, Kachi S, Akiyama H, Kiuchi K, Yokoi K, Hatara C, McLauer T, Aslam S et al (2007) The SDF-1/CXCR4 ligand/receptor pair is an important contributor to several types of ocular neovascularization. FASEB J 21:3219–3230CrossRefPubMedGoogle Scholar
  24. 24.
    Jaffe GJ, Eliott D, Well JA, Prenner JL, Papp A, Patel S (2016) A phase 1 sutdy of intravitreous E10030 in combination with ranibizumab in neovascular age-related macular degeneration. Ophthalmology 123:78–85CrossRefPubMedGoogle Scholar
  25. 25.
    Campochiaro PA, Sophie R, Tolentino M, Miller DM, Browning D, Boyer DS, Heier JS, Gambino L, Withers B, Brigell M et al (2015) Treatment of diabetic macular edema with an inhibitor of vascular endothelial-protein tyrosine phosphatase that activates Tie2. Ophthalmology 122:545–554CrossRefPubMedGoogle Scholar
  26. 26.
    Campochiaro PA, Khanani A, Singer M, Patel S, Boyer D, Dugel P, Kherani S, Withers B, Gambino L, Peters K et al (2016) Enhanced benefit in diabetic macular edema from AKB-9778 Tie2 activation combined with vascular endothelial growth factor suppression. Ophthalmology 123:1722–1730CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang H, Qian DZ, Tan YS, Lee K, Gao P, Ren YR, Rey S, Hammers H, Chang D, Pili R et al (2008) Digoxin and other cardiac glycosides inhibit HIF-1alpha sythesis and block tumor growth. Proc Natl Acad Sci U S A 105:19579–19586CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lee K, Qian DZ, Rey S, Wei H, Liu JO, Semenza GL (2009) Antracycline chemotherpy inhibits HIF-1 transcriptional activity and tumor induced mobilizatio of circulating angiogenic cells. Proc Natl Acad Sci U S A 106:2353–2358CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lee K, Zhang H, Qlan DZ, Rey S, Liu JO, Semenza GL (2009) Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization. Proc Natl Acad Sci U S A 106:17910–17915CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Shen J, Yang XR, Xiao WH, Hackett SF, Sato Y, Campochiaro PA (2006) Vasohibin is up-regulated by VEGF in the retina and suppresses VEGF receptor 2 and retinal neovascularization. FASEB J 20:723–725PubMedGoogle Scholar
  31. 31.
    Tobe T, Ortega S, Luna JD, Ozaki H, Okamoto N, Derevjanik NL, Vinores SA, Basilico C, Campochiaro PA (1998) Targeted disruption of the FGF2 gene does not prevent choroidal neovascularization in a murine model. Am J Pathol 153:1641–1646CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Levinson JW, Desostoa A, Liebes LF, McCormick JJ (1976) Fluorescent labeling of DNA in solution with covalently bound acriflavin. Biochim Biophys Acta 447:260–273CrossRefPubMedGoogle Scholar
  33. 33.
    Levinson JW, Maher VM, JJ MC (1977) Purification of commercil acriflavine by sephadex LH-20 column chromatography. J Histochem Cytochem 25:1275–1277CrossRefPubMedGoogle Scholar
  34. 34.
    Komeima K, Rogers BS, Lu L, Campochiaro PA (2006) Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proc Natl Acad Sci U S A 103:11300–11305CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Smith LEH, Wesolowski E, McLellan A, Kostyk SK, D'Amato R, Sullivan R, D'Amore PA (1994) Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35:101–111PubMedGoogle Scholar
  36. 36.
    Aiello LP, Pierce EA, Foley ED, Takagi H, Chen H, Riddle L, Ferrara N, King GL, Smith LEH (1995) Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci U S A 92:10457–10461CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Pierce EA, Avery RL, Foley ED, Aiello LP, Smith LEH (1995) Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci U S A 92:905–909CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kwak N, Okamoto N, Wood JM, Campochiaro PA (2000) VEGF is an important stimulator in a model of choroidal neovascularization. Invest Ophthalmol Vis Sci 41:3158–3164PubMedGoogle Scholar
  39. 39.
    Saishin Y, Saishin Y, Takahashi K, Lima Silva R, Hylton D, Rudge JS, Wiegand SJ, Campochiaro PA (2003) VEGF-TRAPR1R2 suppresses choroidal neovascularization and VEGF-induced breakdown of the blood-retinal barrier. J Cell Physiol 195:241–248CrossRefPubMedGoogle Scholar
  40. 40.
    Browning CH, Cohen JB, Gaunt R, Gulbransen R (1922) Relationships between antiseptic action and chemical constitution with special reference to compounds of the pyridine, quinoline, acridine, and phenazine series. Proc Royal Soc 93:329–366CrossRefGoogle Scholar
  41. 41.
    Assinder EW (1936) Acriflavine as a urinary antiseptic. Lancet 227Google Scholar
  42. 42.
    Doukas J, Mahesh S, Umeda N, Kachi S, Akiyama H, Yokoi K, Cao J, Chen Z, Dellamary L, Tam B et al (2008) Topical administration of a multi-targeted kinase inhibitor suppresses choroidal neovasculaization and retinal edema. J Cell Physiol 216:29–37CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Patel SR, Lin AS, Edelhauser HF, Prausnitz MR (2011) Suprachoroidal drug delivery to the back of the eye using hollow needles. Pharm Res 28:166–176CrossRefPubMedGoogle Scholar
  44. 44.
    Patel SR, Berezovsky DE, McCarey BE, Zarnitsyn V, Edelhauser HF, Prausnitz MR (2012) Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye. Invest Ophthalmol Vis Sci 53:4433–4441CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Miranda E, Nordgren IK, Male AL, Lawrence CE, Hoakwie F, Cuda F, Court W, Fox KR, Townsend PA, Packham GK et al (2013) A cyclic peptide inhibitor of HIF-1 heterodimerization that inhibits hypoxia signaling in cancer cells. J Am Chem Soc 135:10418–10425CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Broekgaarden M, Weijer R, Krekorian M, van den IJssel B, Kos M, Alles LK, van Wijk AC, Hazai E, van Gulik TM, Heger M (2016) Inhibition of hypoxia-inducible factor 1 with acriflavine sensitizes hypoxic tumor cells to photodynamic therapy with zinc phthalocyanine-encapsulating cationic liposomes. Nano Res 9:1639–1662CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mingbing Zeng
    • 1
    • 2
    • 3
  • Jikui Shen
    • 1
    • 2
  • Yuanyuan Liu
    • 1
    • 2
  • Lucy Yang Lu
    • 1
    • 2
  • Kun Ding
    • 1
    • 2
  • Seth D. Fortmann
    • 1
    • 2
  • Mahmood Khan
    • 1
    • 2
  • Jiangxia Wang
    • 1
  • Sean F. Hackett
    • 1
    • 2
  • Gregg L. Semenza
    • 1
    • 2
  • Peter A. Campochiaro
    • 1
    • 2
  1. 1.Institute for Cell Engineering, McKusick-Nathans Institute of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, and Biological ChemistryJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Hainan Eye Hospital, Zhongshan Ophthalmic CenterSun Yat-Sen UniversityGuangzhouChina

Personalised recommendations