Skip to main content
Log in

Therapeutic potential of pro-angiogenic BPC157 is associated with VEGFR2 activation and up-regulation

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

BPC 157, a pentadecapeptide with extensive healing effects, has recently been suggested to contribute to angiogenesis. However, the underlying mechanism is not yet clear. The present study aimed to explore the potential therapeutic effect and pro-angiogenic mechanism of BPC 157. As demonstrated by the chick chorioallantoic membrane (CAM) assay and endothelial tube formation assay, BPC 157 could increase the vessel density both in vivo and in vitro, respectively. BPC 157 could also accelerate the recovery of blood flow in the ischemic muscle of the rat hind limb as detected by laser Doppler scanning, indicating the promotion of angiogenesis. Histological analysis of the hind limb muscle confirmed the increased number of vessels and the enhanced vascular expression of vascular endothelial growth factor receptor 2 (VEGFR2) in rat with BPC 157 treatment. In vitro study using human vascular endothelial cells further confirmed the increased mRNA and protein expressions of VEGFR2 but not VEGF-A by BPC 157. In addition, BPC 157 could promote VEGFR2 internalization in vascular endothelial cells which was blocked in the presence of dynasore, an inhibitor of endocytosis. BPC 157 time dependently activated the VEGFR2-Akt-eNOS signaling pathway which could also be suppressed by dynasore. The increase of endothelial tube formation induced by BPC 157 was also inhibited by dynasore. This study demonstrates the pro-angiogenic effects of BPC 157 that is associated with the increased expression, internalization of VEGFR2, and the activation of VEGFR2-Akt-eNOS signaling pathway. BPC 157 promotes angiogenesis in CAM assay and tube formation assay. BPC 157 accelerates the blood flow recovery and vessel number in rats with hind limb ischemia. BPC 157 up-regulates VEGFR2 expression in rats with hind limb ischemia and endothelial cell culture. BPC 157 promotes VEGFR2 internalization in association with VEGFR2-Akt-eNOS activation.

Key message

  • BPC 157 promotes angiogenesis in CAM assay and tube formation assay.

  • BPC 157 accelerates the blood flow recovery and vessel number in rats with hind limb ischemia.

  • BPC 157 up-regulates VEGFR2 expression in rats with hind limb ischemia and endothelial cell culture.

  • BPC 157 promotes VEGFR2 internalization in association with VEGFR2-Akt-eNOS activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Seiwerth S, Sikiric P, Grabarevic Z, Zoricic I, Hanzevacki M, Ljubanovic D, Coric V, Konjevoda P, Petek M, Rucman R et al (1997) BPC 157’s effect on healing. J Physiol Paris 91:173–178

    Article  CAS  PubMed  Google Scholar 

  2. Sikiric P, Petek M, Rucman R, Seiwerth S, Grabarevic Z, Rotkvic I, Turkovic B, Jagic V, Mildner B, Duvnjak M et al (1993) A new gastric juice peptide, BPC. An overview of the stomach-stress-organoprotection hypothesis and beneficial effects of BPC. J Physiol Paris 87:313–327

    Article  CAS  PubMed  Google Scholar 

  3. Sikiric P, Seiwerth S, Brcic L, Sever M, Klicek R, Radic B, Drmic D, Ilic S, Kolenc D (2010) Revised Robert’s cytoprotection and adaptive cytoprotection and stable gastric pentadecapeptide BPC 157. Possible significance and implications for novel mediator. Curr Pharm Des 16:1224–1234

    Article  CAS  PubMed  Google Scholar 

  4. Sikiric P, Seiwerth S, Rucman R, Turkovic B, Rokotov DS, Brcic L, Sever M, Klicek R, Radic B, Drmic D et al (2014) Stable gastric pentadecapeptide BPC 157-NO-system relation. Curr Pharm Des 20:1126–1135

    Article  CAS  PubMed  Google Scholar 

  5. Seiwerth S, Brcic L, Vuletic LB, Kolenc D, Aralica G, Misic M, Zenko A, Drmic D, Rucman R, Sikiric P (2014) BPC 157 and blood vessels. Curr Pharm Des 20:1121–1125

    Article  CAS  PubMed  Google Scholar 

  6. Shibuya M (2011) Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2:1097–1105

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang X, Lanahan AA, Simons M (2013) VEGFR2 trafficking: speed doesn’t kill. Cell Cycle 12:2163–2164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jopling HM, Odell AF, Pellet-Many C, Latham AM, Frankel P, Sivaprasadarao A, Walker JH, Zachary IC, Ponnambalam S (2014) Endosome-to-plasma membrane recycling of VEGFR2 receptor tyrosine kinase regulates endothelial function and blood vessel formation. Cells 3:363–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ji Y, Chen S, Li K, Xiao X, Xu T, Zheng S (2014) Upregulated autocrine vascular endothelial growth factor (VEGF)/VEGF receptor-2 loop prevents apoptosis in haemangioma-derived endothelial cells. Br J Dermatol 170:78–86

    Article  CAS  PubMed  Google Scholar 

  10. Ruan L, Wang B, ZhuGe Q, Jin K (2015) Coupling of neurogenesis and angiogenesis after ischemic stroke. Brain Res 1623:166–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Holfeld J, Tepekoylu C, Blunder S, Lobenwein D, Kirchmair E, Dietl M, Kozaryn R, Lener D, Theurl M, Paulus P et al (2014) Low energy shock wave therapy induces angiogenesis in acute hind-limb ischemia via VEGF receptor 2 phosphorylation. PLoS One 9:e103982. doi:10.1371/journal.pone.0103982

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chiang KC, Sun CC, Chen MH, Huang CY, Hsu JT, Yeh TS, Chen LW, Kuo SF, Juang HH, Takano M et al (2016) MART-10, the new brand of 1alpha,25(OH)2D3 analog, is a potent anti-angiogenic agent in vivo and in vitro. J Steroid Biochem Mol Biol 155:26–34

    Article  CAS  PubMed  Google Scholar 

  13. Gourlaouen M, Welti JC, Vasudev NS, Reynolds AR (2013) Essential role for endocytosis in the growth factor-stimulated activation of ERK1/2 in endothelial cells. J Biol Chem 288:7467–7480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sikiric P (1999) The pharmacological properties of the novel peptide BPC 157 (PL-10). Inflammopharmacology 7:1–14

    Article  CAS  PubMed  Google Scholar 

  15. Lovric-Bencic M, Sikiric P, Hanzevacki JS, Seiwerth S, Rogic D, Kusec V, Aralica G, Konjevoda P, Batelja L, Blagaic AB (2004) Doxorubicine-congestive heart failure-increased big endothelin-1 plasma concentration: reversal by amlodipine, losartan, and gastric pentadecapeptide BPC157 in rat and mouse. J Pharmacol Sci 95:19–26

    Article  CAS  PubMed  Google Scholar 

  16. Prkacin I, Separovic J, Aralicia G, Perovic D, Gjurasin M, Lovric-Bencic M, Stancic-Rokotov D, Staresinic M, Anic T, Mikus D et al (2001) Portal hypertension and liver lesions in chronically alcohol drinking rats prevented and reversed by stable gastric pentadecapeptide BPC 157 (PL-10, PLD-116), and propranolol, but not ranitidine. J Physiol Paris 95:315–324

    Article  CAS  PubMed  Google Scholar 

  17. Chang CH, Tsai WC, Hsu YH, Pang JH (2014) Pentadecapeptide BPC 157 enhances the growth hormone receptor expression in tendon fibroblasts. Molecules 19:19066–19077

    Article  PubMed  Google Scholar 

  18. Sikiric P, Separovic J, Anic T, Buljat G, Mikus D, Seiwerth S, Grabarevic Z, Stancic-Rokotov D, Pigac B, Hanzevacki M et al (1999) The effect of pentadecapeptide BPC 157, H2-blockers, omeprazole and sucralfate on new vessels and new granulation tissue formation. J Physiol Paris 93:479–485

    Article  CAS  PubMed  Google Scholar 

  19. Sikiric P, Seiwerth S, Brcic L, Blagaic AB, Zoricic I, Sever M, Klicek R, Radic B, Keller N, Sipos K et al (2006) Stable gastric pentadecapeptide BPC 157 in trials for inflammatory bowel disease (PL-10, PLD-116, PL 14736, Pliva, Croatia). Full and distended stomach, and vascular response. Inflammopharmacology 14:214–221

    Article  CAS  PubMed  Google Scholar 

  20. Brcic L, Brcic I, Staresinic M, Novinscak T, Sikiric P, Seiwerth S (2009) Modulatory effect of gastric pentadecapeptide BPC 157 on angiogenesis in muscle and tendon healing. J Physiol Pharmacol 60(Suppl 7):191–196

    PubMed  Google Scholar 

  21. Huang T, Zhang K, Sun L, Xue X, Zhang C, Shu Z, Mu N, Gu J, Zhang W, Wang Y et al (2015) Body protective compound-157 enhances alkali-burn wound healing in vivo and promotes proliferation, migration, and angiogenesis in vitro. Drug design, development and therapy 9:2485–2499

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cooke JP, Losordo DW (2015) Modulating the vascular response to limb ischemia: angiogenic and cell therapies. Circ Res 116:1561–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sikiric P, Seiwerth S, Grabarevic Z, Rucman R, Petek M, Jagic V, Turkovic B, Rotkvic I, Mise S, Zoricic I et al (1997) Pentadecapeptide BPC 157 positively affects both non-steroidal anti-inflammatory agent-induced gastrointestinal lesions and adjuvant arthritis in rats. J Physiol Paris 91:113–122

    Article  CAS  PubMed  Google Scholar 

  24. Keremi B, Lohinai Z, Komora P, Duhaj S, Borsi K, Jobbagy-Ovari G, Kallo K, Szekely AD, Fazekas A, Dobo-Nagy C et al (2009) Antiinflammatory effect of BPC 157 on experimental periodontitis in rats. J Physiol Pharmacol 60(Suppl 7):115–122

    PubMed  Google Scholar 

  25. Tkalcevic VI, Cuzic S, Brajsa K, Mildner B, Bokulic A, Situm K, Perovic D, Glojnaric I, Parnham MJ (2007) Enhancement by PL 14736 of granulation and collagen organization in healing wounds and the potential role of egr-1 expression. Eur J Pharmacol 570:212–221

    Article  PubMed  Google Scholar 

  26. Malavaud B, Tack I, Jonca F, Praddaude F, Moro F, Ader JL, Plouet J (1997) Activation of Flk-1/KDR mediates angiogenesis but not hypotension. Cardiovasc Res 36:276–281

    Article  CAS  PubMed  Google Scholar 

  27. Masaki I, Yonemitsu Y, Yamashita A, Sata S, Tanii M, Komori K, Nakagawa K, Hou X, Nagai Y, Hasegawa M et al (2002) Angiogenic gene therapy for experimental critical limb ischemia: acceleration of limb loss by overexpression of vascular endothelial growth factor 165 but not of fibroblast growth factor-2. Circ Res 90:966–973

    Article  CAS  PubMed  Google Scholar 

  28. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439

    Article  CAS  PubMed  Google Scholar 

  29. Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ, Shah PK, Willerson JT, Benza RL, Berman DS et al (2003) The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 107:1359–1365

    Article  CAS  PubMed  Google Scholar 

  30. Yasumura EG, Stilhano RS, Samoto VY, Matsumoto PK, de Carvalho LP, Valero Lapchik VB, Han SW (2012) Treatment of mouse limb ischemia with an integrative hypoxia-responsive vector expressing the vascular endothelial growth factor gene. PLoS One 7:e33944. doi:10.1371/journal.pone.0033944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lederman RJ, Mendelsohn FO, Anderson RD, Saucedo JF, Tenaglia AN, Hermiller JB, Hillegass WB, Rocha-Singh K, Moon TE, Whitehouse MJ et al (2002) Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study): a randomised trial. Lancet 359:2053–2058

    Article  CAS  PubMed  Google Scholar 

  32. Belch J, Hiatt WR, Baumgartner I, Driver IV, Nikol S, Norgren L, Van Belle E, Committees T, Investigators (2011) Effect of fibroblast growth factor NV1FGF on amputation and death: a randomised placebo-controlled trial of gene therapy in critical limb ischaemia. Lancet 377:1929–1937

    Article  CAS  PubMed  Google Scholar 

  33. Creager MA, Olin JW, Belch JJ, Moneta GL, Henry TD, Rajagopalan S, Annex BH, Hiatt WR (2011) Effect of hypoxia-inducible factor-1alpha gene therapy on walking performance in patients with intermittent claudication. Circulation 124:1765–1773

    Article  CAS  PubMed  Google Scholar 

  34. Willmann JK, Chen K, Wang H, Paulmurugan R, Rollins M, Cai W, Wang DS, Chen IY, Gheysens O, Rodriguez-Porcel M et al (2008) Monitoring of the biological response to murine hindlimb ischemia with 64Cu-labeled vascular endothelial growth factor-121 positron emission tomography. Circulation 117:915–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dokun AO, Chen L, Lanjewar SS, Lye RJ, Annex BH (2014) Glycaemic control improves perfusion recovery and VEGFR2 protein expression in diabetic mice following experimental PAD. Cardiovasc Res 101:364–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Imoukhuede PI, Dokun AO, Annex BH, Popel AS (2013) Endothelial cell-by-cell profiling reveals the temporal dynamics of VEGFR1 and VEGFR2 membrane localization after murine hindlimb ischemia. Am J Phys Heart Circ Phys 304:H1085–H1093

    CAS  Google Scholar 

  37. Wu FT, Stefanini MO, Mac Gabhann F, Kontos CD, Annex BH, Popel AS (2010) VEGF and soluble VEGF receptor-1 (sFlt-1) distributions in peripheral arterial disease: an in silico model. Am J Phys Heart Circ Phys 298:H2174–H2191

    CAS  Google Scholar 

  38. Wieczor R, Gadomska G, Ruszkowska-Ciastek B, Stankowska K, Budzynski J, Fabisiak J, Suppan K, Pulkowski G, Rosc D (2015) Impact of type 2 diabetes on the plasma levels of vascular endothelial growth factor and its soluble receptors type 1 and type 2 in patients with peripheral arterial disease. J Zhejiang Univ Sci B 16:948–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jin ZG, Ueba H, Tanimoto T, Lungu AO, Frame MD, Berk BC (2003) Ligand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase. Circ Res 93:354–363

    Article  CAS  PubMed  Google Scholar 

  40. Shi F, Wang YC, Zhao TZ, Zhang S, Du TY, Yang CB, Li YH, Sun XQ (2012) Effects of simulated microgravity on human umbilical vein endothelial cell angiogenesis and role of the PI3K-Akt-eNOS signal pathway. PLoS One 7:e40365. doi:10.1371/journal.pone.0040365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Philippova M, Joshi MB, Pfaff D, Kyriakakis E, Maslova K, Erne P, Resink TJ (2012) T-cadherin attenuates insulin-dependent signalling, eNOS activation, and angiogenesis in vascular endothelial cells. Cardiovasc Res 93:498–507

    Article  CAS  PubMed  Google Scholar 

  42. Jeltsch M, Leppanen VM, Saharinen P, Alitalo K (2013) Receptor tyrosine kinase-mediated angiogenesis. Cold Spring Harb Perspect Biol 5. doi:10.1101/cshperspect.a009183

Download references

Acknowledgments

This work was supported by the Chang Gung Memorial Hospital [Grants CMRPD1A0531, CMRPD1C0231, CMRPG391311, CMRPG3A1131] and the Ministry of Science and Technology, Taiwan [Grant NMRPD181001-3].

Author contributions

Authors responsible for concept and design were MJH, HTL, HYH, YL, and JHSP. Experimental performance: MJH, HTL, HYH, and YL. Technical supports: CNW, YSK, VHSC, and JSW. MJH, HTL, and JHSP were responsible in the analysis and interpretation of data. MJH and JHSP drafted the manuscript. MJH and HTL contribute to this work equally.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Hwei S. Pang.

Ethics declarations

All procedures complied with the standards for care and use of animal subjects as stated in the Guide for the Care and Use of Laboratory Animals (Institute of Laboratory Resources, National Academy of Sciences, Bethesda, MD). The protocols in our animal studies were approved by the Institutional Animal Care and Use Committee of Chang Gung University.

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsieh, MJ., Liu, HT., Wang, CN. et al. Therapeutic potential of pro-angiogenic BPC157 is associated with VEGFR2 activation and up-regulation. J Mol Med 95, 323–333 (2017). https://doi.org/10.1007/s00109-016-1488-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-016-1488-y

Keywords

Navigation