Journal of Molecular Medicine

, Volume 94, Issue 11, pp 1199–1215 | Cite as

Zinc and zinc-containing biomolecules in childhood brain tumors

  • Jan Hrabeta
  • Tomas Eckschlager
  • Marie Stiborova
  • Zbynek Heger
  • Sona Krizkova
  • Vojtech AdamEmail author


Zinc ions are essential cofactors of a wide range of enzymes, transcription factors, and other regulatory proteins. Moreover, zinc is also involved in cellular signaling and enzymes inhibition. Zinc dysregulation, deficiency, over-supply, and imbalance in zinc ion transporters regulation are connected with various diseases including cancer. A zinc ion pool is maintained by two types of proteins: (i) zinc-binding proteins, which act as a buffer and intracellular donors of zinc and (ii) zinc transporters responsible for zinc fluxes into/from cells and organelles. The decreased serum zinc ion levels have been identified in patients suffering from various cancer diseases, including head and neck tumors and breast, prostate, liver, and lung cancer. On the contrary, increased zinc ion levels have been found in breast cancer and other malignant tissues. Zinc metalloproteomes of a majority of tumors including brain ones are still not yet fully understood. Current knowledge show that zinc ion levels and detection of certain zinc-containing proteins may be utilized for diagnostic and prognostic purposes. In addition, these proteins can also be promising therapeutic targets. The aim of the present work is an overview of the importance of zinc ions, zinc transporters, and zinc-containing proteins in brain tumors, which are, after leukemia, the second most common type of childhood cancer and the second leading cause of death in children after accidents.


Cancer Childhood brain tumors Metallothioneins Zinc metalloenzymes Zinc transporters 



This research was carried out under the project CEITEC 2020 (LQ1601) with financial support from the Ministry of Education, Youth and Sports of the Czech Republic under the National Sustainability Programme II. The financial support from the project AZV CR 15-28334A and from the Ministry of Health of the Czech Republic for conceptual development of research organization 00064203 (University Hospital Motol, Prague, Czech Republic) is highly acknowledged.

Author contributions

J.H., T.E., and M.S. wrote and discussed the chapter “The roles of zinc ions and their transporter proteins in cell and tissue development” and conceived the study. Z.H. prepared and critically reviewed “Zinc ions and zinc containing proteins as possible therapeutic targets”. S.K. and V.A. prepared “Zinc, zinc-containing biomolecules and childhood brain tumors” and “Utilization of zinc and zinc containing proteins for cancer diagnostics” and conceived the study.


  1. 1.
    Fleming AJ, Chi SN (2012) Brain tumors in children. Curr Probl Pediatr Adolesc Health Care 42:80–103PubMedCrossRefGoogle Scholar
  2. 2.
    Mueller S, Chang S (2009) Pediatric brain tumors: current treatment strategies and future therapeutic approaches. Neurotherapeutics 6:570–586PubMedCrossRefGoogle Scholar
  3. 3.
    Qi ZX, Cai JJ, Chen LC, Yue Q, Gong Y, Yao Y, Mao Y (2016) TRIM28 as an independent prognostic marker plays critical roles in glioma progression. J Neuro-Oncol 126:19–26CrossRefGoogle Scholar
  4. 4.
    Mehrian-Shai R, Yalon M, Simon AJ, Eyal E, Pismenyuk T, Moshe I, Constantini S, Toren A (2015) High metallothionein predicts poor survival in glioblastoma multiforme. BMC Med Genet 8:1–9Google Scholar
  5. 5.
    Wrensch M, Minn Y, Chew T, Bondy M, Berger MS (2002) Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro-Oncology 4:278–299PubMedPubMedCentralGoogle Scholar
  6. 6.
    Murakami M, Hirano T (2008) Intracellular zinc homeostasis and zinc signaling. Cancer Sci 99:1515–1522PubMedCrossRefGoogle Scholar
  7. 7.
    Klug A (2010) The discovery of zinc fingers and their applications in gene regulation and genome manipulation. In: Raetz CRH, Rothman JE, Thorner JW (eds) Kornberg RD. Annual Review of Biochemistry Annual Reviews, Palo Alto, pp. 213–231Google Scholar
  8. 8.
    Lipkowitz S, Weissman AM (2011) RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat Rev Cancer 11:629–643PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Maret W (2013) Inhibitory zinc sites in enzymes. Biometals 26:197–204PubMedCrossRefGoogle Scholar
  10. 10.
    Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano T (2011) Zinc homeostasis and signaling in health and diseases. J Biol Inorg Chem 16:1123–1134PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Gumulec J, Masarik M, Krizkova S, Adam V, Hubalek J, Hrabeta J, Eckschlager T, Stiborova M, Kizek R (2011) Insight to physiology and pathology of zinc(II) ions and their actions in breast and prostate carcinoma. Curr Med Chem 18:5041–5051PubMedCrossRefGoogle Scholar
  12. 12.
    Lichten LA, Cousins RJ (2009) Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr 29:153–176PubMedCrossRefGoogle Scholar
  13. 13.
    Qi ST, Song Y, Peng YP, Wang H, Long H, Yu XL, Li ZY, Fang LX, Wu AB, Luo WR, et al. (2012) ZEB2 mediates multiple pathways regulating cell proliferation, migration, invasion, and apoptosis in glioma. PLoS One 7:1–12Google Scholar
  14. 14.
    Maret W (2013) Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr 4:82–91PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Beyersmann D, Haase H (2001) Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals 14:331–341PubMedCrossRefGoogle Scholar
  16. 16.
    Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13:1205–1218PubMedCrossRefGoogle Scholar
  17. 17.
    Waldron KJ, Rutherford JC, Ford D, Robinson NJ (2009) Metalloproteins and metal sensing. Nature 460:823–830PubMedCrossRefGoogle Scholar
  18. 18.
    Nagel WW, Vallee BL (1995) Cell-cycle regulation of metallothionein in human colonic-cancer cells. Proc Natl Acad Sci U S A 92:579–583PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Pedersen MO, Larsen A, Pedersen DS, Stoltenberg M, Penkowa M (2009) Metallic gold treatment reduces proliferation of inflammatory cells, increases expression of VEGF and FGF, and stimulates cell proliferation in the subventricular zone following experimental traumatic brain injury. Histol Histopath 24:573–586Google Scholar
  20. 20.
    Takeda A, Fujii H, Minamino T, Tamano H (2014) Intracellular Zn2+ signaling in cognition. J Neurosci Res 92:819–824PubMedCrossRefGoogle Scholar
  21. 21.
    Takeda A, Nakamura M, Fujii H, Tamano H (2013) Synaptic Zn2+ homeostasis and its significance. Metallomics 5:417–423PubMedCrossRefGoogle Scholar
  22. 22.
    Frederickson CJ, Suh SW, Silva D, Thompson RB (2000) Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr 130:1471S–1483SPubMedGoogle Scholar
  23. 23.
    Sindreu C, Storm DR (2011) Modulation of neuronal signal transduction and memory formation by synaptic zinc. Front Behav Neurosci 5:1–14CrossRefGoogle Scholar
  24. 24.
    Miles AT, Hawksworth GM, Beattie JH, Rodilla V (2000) Induction, regulation, degradation, and biological significance of mammalian metallothioneins. Crit Rev Biochem Mol Biol 35:35–70PubMedCrossRefGoogle Scholar
  25. 25.
    Eckschlager T, Adam V, Hrabeta J, Figova K, Kizek R (2009) Metallothioneins and cancer. Curr Protein Pept Sci 10:360–375PubMedCrossRefGoogle Scholar
  26. 26.
    Colvin RA, Holmes WR, Fontaine CP, Maret W (2010) Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics 2:306–317PubMedCrossRefGoogle Scholar
  27. 27.
    Krizkova S, Fabrik I, Adam V, Hrabeta P, Eckschlager T, Kizek R (2009) Metallothionein—a promising tool for cancer diagnostics. Bratisl Med J 110:93–97Google Scholar
  28. 28.
    Lindeque JZ, Levanets O, Louw R, van der Westhuizen FH (2010) The involvement of metallothioneins in mitochondrial function and disease. Curr Protein Pept Sci 11:292–309PubMedCrossRefGoogle Scholar
  29. 29.
    Kadota Y, Suzuki S, Ideta S, Fukinbara Y, Kawakami T, Imai H, Nakagawa Y, Sato M (2010) Enhanced metallothionein gene expression induced by mitochondrial oxidative stress is reduced in phospholipid hydroperoxide glutathione peroxidase-overexpressed cells. Eur J Pharmacol 626:166–170PubMedCrossRefGoogle Scholar
  30. 30.
    Verrax J, Pedrosa RC, Beck R, Dejeans N, Taper H, Calderon PB (2009) In situ modulation of oxidative stress: a novel and efficient strategy to kill cancer cells. Curr Med Chem 16:1821–1830PubMedCrossRefGoogle Scholar
  31. 31.
    Ostrakhovitch EA, Olsson PE, Jiang S, Cherian MG (2006) Interaction of metallothionein with tumor suppressor p53 protein. FEBS Lett 580:1235–1238PubMedCrossRefGoogle Scholar
  32. 32.
    Krizkova S, Fabrik I, Huska D, Adam V, Babula P, Hrabeta J, Eckschlager T, Pochop P, Darsova D, Kukacka J, et al. (2010) An adsorptive transfer technique coupled with Brdicka reaction to reveal the importance of metallothionein in chemotherapy with platinum based cytostatics. Int J Mol Sci 11:4826–4842PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Krizkova S, Masarik M, Majzlik P, Kukacka J, Kruseova J, Adam V, Prusa R, Eckschlager T, Stiborova M, Kizek R (2010) Serum metallothionein in newly diagnosed patients with childhood solid tumours. Acta Biochim Pol 57:561–566PubMedGoogle Scholar
  34. 34.
    Kruseova J, Hynek D, Adam V, Kizek R, Prusa R, Hrabeta J, Eckschlager T (2013) Serum metallothioneins in childhood tumours—a potential prognostic marker. Int J Mol Sci 14:12170–12185PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Prusa R, Kukacka J, Vajtr D, Huska D, Alba J, Adam V, Kizek R (2008) New technique for quantitative elelectrochemical determination of total plasma mRNA. Clin Chem 54:A156–A157Google Scholar
  36. 36.
    Krizkova S, Fabrik I, Adam V, Kukacka J, Prusa R, Chavis GJ, Trnkova L, Strnadel J, Horak V, Kizek R (2008) Utilizing of adsorptive transfer stripping technique Brdicka reaction for determination of metallothioneins level in melanoma cells, blood serum and tissues. Sensors 8:3106–3122PubMedCentralCrossRefGoogle Scholar
  37. 37.
    Fabrik I, Krizkova S, Huska D, Adam V, Hubalek J, Trnkova L, Eckschlager T, Kukacka J, Prusa R, Kizek R (2008) Employment of electrochemical techniques for metallothionein determination in tumor cell lines and patients with a tumor disease. Electroanalysis 20:1521–1532CrossRefGoogle Scholar
  38. 38.
    Krizkova S, Ryvolova M, Hrabeta J, Adam V, Stiborova M, Eckschlager T, Kizek R (2012) Metallothioneins and zinc in cancer diagnosis and therapy. Drug Metab Rev 44:287–301PubMedCrossRefGoogle Scholar
  39. 39.
    Dziegiel P, Pula B, Kobierzycki C, Stasiolek M, PodhorskaOkolow M (2016) Metallothioneins in normal and cancer cells. Cancer Cells:1–117Google Scholar
  40. 40.
    Bonaventura P, Benedetti G, Albarede F, Miossec P (2015) Zinc and its role in immunity and inflammation. Autoimmun Rev 14:277–285PubMedCrossRefGoogle Scholar
  41. 41.
    Tubek S (2007) Zinc supplementation or regulation of its homeostasis: advantages and threats. Biol Trace Elem Res 119:1–9PubMedCrossRefGoogle Scholar
  42. 42.
    Leone N, Courbon D, Ducimetiere P, Zureik M (2006) Zinc, copper, and magnesium and risks for all-cause, cancer, and cardiovascular mortality. Epidemiology 17:308–314PubMedCrossRefGoogle Scholar
  43. 43.
    Cousins RJ (1986) Toward a molecular understanding of zinc-metabolism. Clin Physiol Biochem 4:20–30PubMedGoogle Scholar
  44. 44.
    Wu TJ, Sempos CT, Freudenheim JL, Muti P, Smith E (2004) Serum iron, copper and zinc concentrations and risk of cancer mortality in US adults. Ann Epidemiol 14:195–201PubMedCrossRefGoogle Scholar
  45. 45.
    Arslan M, Demir H, Arslan H, Gokalp AS, Demir C (2011) Trace elements, heavy metals and other biochemical parameters in malignant glioma patients. Asian Pac J Cancer Prev 12:447–451PubMedGoogle Scholar
  46. 46.
    Kensova R, Hynek D, Kynicky J, Konecna M, Eckschlager T, Adam V, Hubalek J, Kizek R (2014) Determination of metal ions in the plasma of children with tumour diseases by differential pulse voltammetry. Int J Electrochem Sci 9:4675–4691Google Scholar
  47. 47.
    Lu H, Cai L, Mu LN, Lu QY, Zhao JK, Cui Y, Sul JH, Zhou XF, Ding BG, Elashoff RM, et al. (2006) Dietary mineral and trace element intake and squamous cell carcinoma of the esophagus in a Chinese population. Nutr Cancer 55:63–70PubMedCrossRefGoogle Scholar
  48. 48.
    Zhou W, Park S, Liu G, Miller DP, Wang LI, Pothier L, Wain JC, Lynch TJ, Giovannucci E, Christiani DC (2005) Dietary iron, zinc, and calcium and the risk of lung cancer. Epidemiology 16:772–779PubMedCrossRefGoogle Scholar
  49. 49.
    Lee DH, Anderson KE, Folsom AR, Jacobs DR (2005) Heme iron, zinc and upper digestive tract cancer: the Iowa Women’s Health Study. Int J Cancer 117:643–647PubMedCrossRefGoogle Scholar
  50. 50.
    Gallus S, Foschi R, Negri E, Talamini R, Franceschi S, Montella M, Ramazzotti V, Tavani A, Dal Maso L, La Vecchia C (2007) Dietany zinc and prostate cancer risk: a case-control study from Italy. Eur Urol 52:1052–1057PubMedCrossRefGoogle Scholar
  51. 51.
    Dimitropoulou P, Nayee S, Liu JF, Demetriou L, van Tongeren M, Hepworth SJ, Muir KR (2008) Dietary zinc intake and brain cancer in adults: a case-control study. Br J Nutr 99:667–673PubMedCrossRefGoogle Scholar
  52. 52.
    Qin ZY, Caruso JA, Lai B, Matusch A, Becker JS (2011) Trace metal imaging with high spatial resolution: applications in biomedicine. Metallomics 3:28–37PubMedCrossRefGoogle Scholar
  53. 53.
    Zoriy MV, Dehnhardt M, Matusch A, Becker JS (2008) Comparative imaging of P, S, Fe, Cu, Zn and C in thin sections of rat brain tumor as well as control tissues by laser ablation inductively coupled plasma mass spectrometry. Spectroc Acta Pt B-Atom Spectr 63:375–382CrossRefGoogle Scholar
  54. 54.
    Takeda A, Tamano H, Oku N (2003) Alteration of zinc concentrations in the brain implanted with C6 glioma. Brain Res 965:170–173PubMedCrossRefGoogle Scholar
  55. 55.
    Yoshida D, Ikeda Y, Nakazawa S (1993) Quantitative-analysis of copper, zinc and copper-zinc ratio in selected human brain-tumors. J Neuro-Oncol 16:109–115CrossRefGoogle Scholar
  56. 56.
    Zhuang GS, Wang YS, Tan MG, Zhi M, Wang YG, Zhang FL (1991) Preliminary-study of trace-elements in human brain-tumor tissues by instrumental neutron-activation analysis. J Radioanal Nucl Chem-Artic 151:327–335CrossRefGoogle Scholar
  57. 57.
    Wandzilak A, Czyzycki M, Wrobel P, Szczerbowska-Boruchowska M, Radwanska E, Adamek D, Lankosz M (2013) The oxidation states and chemical environments of iron and zinc as potential indicators of brain tumour malignancy grade—preliminary results. Metallomics 5:1547–1553PubMedCrossRefGoogle Scholar
  58. 58.
    Wandzilak A, Czyzycki M, Radwanska E, Adamek CD, Geraki K, Lankosz M (2015) X-ray fluorescence study of the concentration of selected trace and minor elements in human brain tumours. Spectroc Acta Pt B-Atom Spectr 114:52–57CrossRefGoogle Scholar
  59. 59.
    Zaichick VY, Sviridova TV, Zaichick SV (1997) Zinc in human prostate gland: normal, hyperplastic and cancerous. J Radioanal Nucl Chem 217:157–161CrossRefGoogle Scholar
  60. 60.
    Hogstrand C, Kille P, Nicholson RI, Taylor KM (2009) Zinc transporters and cancer: a potential role for ZIP7 as a hub for tyrosine kinase activation. Trends Mol Med 15:101–111PubMedCrossRefGoogle Scholar
  61. 61.
    Plum LM, Rink L, Haase H (2010) The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7:1342–1365PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281:24085–24089PubMedCrossRefGoogle Scholar
  63. 63.
    Kambe T, Hashimoto A, Fujimoto S (2014) Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell Mol Life Sci 71:3281–3295PubMedCrossRefGoogle Scholar
  64. 64.
    Lin Y, Chen Y, Wang YZ, Yang JX, Zhu VF, Liu YL, Cui XB, Chen L, Yan W, Jiang T, et al. (2013) ZIP4 is a novel molecular marker for glioma. Neuro-Oncology 15:1008–1016PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kang X, Chen R, Zhang J, Li G, Dai PG, Chen C, Wang HJ (2015) Expression profile analysis of zinc transporters (ZIP4, ZIP9, ZIP11, ZnT9) in gliomas and their correlation with IDH1 mutation status. Asian Pac J Cancer Prev 16:3355–3360PubMedCrossRefGoogle Scholar
  66. 66.
    Yan W, Imanishi M, Futaki S, Sugiura Y (2007) Alpha-helical linker of an artificial 6-zinc finger peptide contributes to selective DNA binding to a discontinuous recognition sequence. Biochemistry 46:8517–8524PubMedCrossRefGoogle Scholar
  67. 67.
    Zhou YX, Su ZP, Huang YL, Sun T, Chen SS, Wu TF, Chen GL, Xie XS, Li B, Du ZW (2011) The Zfx gene is expressed in human gliomas and is important in the proliferation and apoptosis of the human malignant glioma cell line U251. J Exp Clin Cancer Res 30:1–10CrossRefGoogle Scholar
  68. 68.
    Song G, Ouyang GL, Bao SD (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9:59–71PubMedCrossRefGoogle Scholar
  69. 69.
    Zhu ZC, Li K, Xu DF, Liu YJ, Tang HL, Xie Q, Xie LQ, Liu JW, Wang HT, Gong Y, et al. (2013) ZFX regulates glioma cell proliferation and survival in vitro and in vivo. J Neuro-Oncol 112:17–25CrossRefGoogle Scholar
  70. 70.
    DeSouza R-M, Jones BRT, Lowis SP, Kurian KM (2014) Pediatric medulloblastoma—update on molecular classification driving targeted therapies. Front Oncol 4:176–176PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Kurisaka M, Mori K (1996) Immunohistochemical study of medulloblastoma with a monoclonal antibody against human copper and zinc-superoxide dismutase. Neurol Med-Chir 36:220–223CrossRefGoogle Scholar
  72. 72.
    Palmer CJ, Galan-Caridad JM, Weisberg SP, Lei L, Esquilin JM, Croft GF, Wainwright B, Canoll P, Owens DM, Reizis B (2014) Zfx facilitates tumorigenesis caused by activation of the hedgehog pathway. Cancer Res 74:5914–5924PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Santoni M, Burattini L, Nabissi M, Morelli MB, Berardi R, Santoni G, Cascinu S (2013) Essential role of Gli proteins in glioblastoma multiforme. Curr Protein Pept Sci 14:133–140PubMedCrossRefGoogle Scholar
  74. 74.
    Dey J, Ditzler S, Knoblaugh SE, Hatton BA, Schelter JM, Cleary MA, Mecham B, Rorke-Adams LB, Olson JM (2012) A distinct smoothened mutation causes severe cerebellar developmental defects and medulloblastoma in a novel transgenic mouse model. Mol Cell Biol 32:4104–4115PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Vriend J, Ghavami S, Marzban H (2015) The role of the ubiquitin proteasome system in cerebellar development and medulloblastoma. Mol Brain 8:1–14CrossRefGoogle Scholar
  76. 76.
    He QW, Xia YP, Chen SC, Wang Y, Huang M, Huang Y, Li JY, Li YN, Gao Y, Mao L, et al. (2013) Astrocyte-derived sonic hedgehog contributes to angiogenesis in brain microvascular endothelial cells via RhoA/ROCK pathway after oxygen-glucose deprivation. Mol Neurobiol 47:976–987PubMedCrossRefGoogle Scholar
  77. 77.
    Ellison DW, Dalton J, Kocak M, Nicholson SL, Fraga C, Neale G, Kenney AM, Brat DJ, Perry A, Yong WH, et al. (2011) Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol 121:381–396PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Hui CC, Angers S (2011) Gli proteins in development and disease. In: Goldstein L, Lehmann R (eds) Schekman R. Annual review of cell and developmental biology annual reviews, Palo Alto, pp. 513–537Google Scholar
  79. 79.
    Srivastava VK, Nalbantoglu J (2010) The cellular and developmental biology of medulloblastoma current perspectives on experimental therapeutics. Cancer Biol Ther 9:843–852PubMedCrossRefGoogle Scholar
  80. 80.
    Buczkowicz P, Ma J, Hawkins C (2011) GLI2 is a potential therapeutic target in pediatric medulloblastoma. J Neuropathol Exp Neurol 70:430–437PubMedCrossRefGoogle Scholar
  81. 81.
    Bar EE, Chaudhry A, Farah MH, Eberhart CG (2007) Hedgehog signaling promotes medulloblastoma survival via Bc/II. Am J Pathol 170:347–355PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Fan HR, Oro AE, Scott MP, Khavari PA (1997) Induction of basal cell carcinoma features in transgenic human skin expressing sonic hedgehog. Nat Med 3:788–792PubMedCrossRefGoogle Scholar
  83. 83.
    Sakakini N, Turchi L, Bergon A, Holota H, Rekima S, Lopez F, Paquis P, Almairac F, Fontaine D, Baeza-Kallee N, et al. (2016) A positive feed-forward loop associating EGR1 and PDGFA promotes proliferation and self-renewal in glioblastoma stem cells. J Biol Chem in pressGoogle Scholar
  84. 84.
    Zhang CR, Zhu QB, He H, Jiang L, Qiang Q, Hu LH, Hu GH, Jiang Y, Ding XH, Lu YC (2016) RIZ1: a potential tumor suppressor in glioma (vol 15, 990, 2015). BMC Cancer 16:1–10CrossRefGoogle Scholar
  85. 85.
    Spina R, Filocamo G, Iaccino E, Scicchitano S, Lupia M, Chiarella E, Mega T, Bernaudo F, Pelaggi D, Mesuraca M, et al. (2013) Critical role of zinc finger protein 521 in the control of growth, clonogenicity and tumorigenic potential of medulloblastoma cells. Oncotarget 4:1280–1292PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Rauscher J, Beschorner R, Gierke M, Bisdas S, Braun C, Ebner FH, Schittenhelm J (2014) WT1 expression increases with malignancy and indicates unfavourable outcome in astrocytoma. J Clin Pathol 67:556–561PubMedCrossRefGoogle Scholar
  87. 87.
    Ryu HH, Jung S, Jung TY, Moon KS, Kim IY, Jeong YI, Jin SG, Pei J, Wen M, Jang WY (2012) Role of metallothionein 1E in the migration and invasion of human glioma cell lines. Int J Oncol 41:1305–1313PubMedGoogle Scholar
  88. 88.
    Berghoff AS, Hainfellner JA, Marosi C, Preusser M (2015) Assessing MGMT methylation status and its current impact on treatment in glioblastoma. CNS Oncol 4:47–52PubMedCrossRefGoogle Scholar
  89. 89.
    Meyer MA (2014) Highly expressed genes in human high grade gliomas: immunohistochemical analysis of data from the human protein atlas. Neurol Int 6:5348–5348PubMedPubMedCentralGoogle Scholar
  90. 90.
    Sahab ZJ, Hall MD, Sung YM, Dakshanamurthy S, Ji Y, Kumar D, Byers SW (2011) Tumor suppressor RARRES1 interacts with cytoplasmic carboxypeptidase AGBL2 to regulate the alpha-tubulin tyrosination cycle. Cancer Res 71:1219–1228PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Kandoth C, McLellan MD, Vandin F, Ye K, Niu BF, Lu C, Xie MC, Zhang QY, McMichael JF, Wyczalkowski MA, et al. (2013) Mutational landscape and significance across 12 major cancer types. Nature 502:333–339PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Suzuki K, Matsubara H (2011) Recent advances in p53 research and cancer treatment. J Biomed Biotechnol 2011:1–7Google Scholar
  93. 93.
    Loh SN (2010) The missing zinc: p53 misfolding and cancer. Metallomics 2:442–449PubMedCrossRefGoogle Scholar
  94. 94.
    Merino D, Malkin D (2014) p53 and hereditary cancer. Subcell Biochem 85:1–16PubMedCrossRefGoogle Scholar
  95. 95.
    Krutilkova V, Trkova M, Fleitz J, Gregor V, Novotna K, Krepelova A, Sumerauer D, Kodet R, Siruckova S, Plevova P, et al. (2005) Identification of five new families strengthens the link between childhood choroid plexus carcinoma and germline TP53 mutations. Eur J Cancer 41:1597–1603PubMedCrossRefGoogle Scholar
  96. 96.
    Azmi AS, Philip PA, Beck FWJ, Wang Z, Banerjee S, Wang S, Yang D, Sarkar FH, Mohammad RM (2011) MI-219-zinc combination: a new paradigm in MDM2 inhibitor-based therapy. Oncogene 30:117–126PubMedCrossRefGoogle Scholar
  97. 97.
    Rasheed BKA, McLendon RE, Herndon JE, Friedman HS, Friedman AH, Bigner DD, Bigner SH (1994) Alterations of the tp53 gene in human gliomas. Cancer Res 54:1324–1330PubMedGoogle Scholar
  98. 98.
    James CD, Carlbom E, Nordenskjold M, Collins VP, Cavenee WK (1989) Mitotic recombination of chromosome-17 in astrocytomas. Proc Natl Acad Sci U S A 86:2858–2862PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Ohgaki H, Eibl RH, Schwab M, Reichel MB, Mariani L, Gehring M, Petersen I, Holl T, Wiestler OD, Kleihues P (1993) Mutations of the p53 tumor-suppressor gene in neoplasms of the human nervous-system. Mol Carcinog 8:74–80PubMedCrossRefGoogle Scholar
  100. 100.
    Ichimura K, Bolin MB, Goike HM, Schmidt EE, Moshref A, Collins VP (2000) Deregulation of the p14(ARF)/MDM2/p53 pathway is a prerequisite for human astrocytic gliomas with G(1)-S transition control gene abnormalities. Cancer Res 60:417–424PubMedGoogle Scholar
  101. 101.
    Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, Burkhard C, Schuler D, Probst-Hensch NM, Maiorka PC, et al. (2004) Genetic pathways to glioblastoma: a population-based study. Cancer Res 64:6892–6899PubMedCrossRefGoogle Scholar
  102. 102.
    Artells E, Palacios O, Capdevila M, Atrian S (2014) In vivo-folded metal-metallothionein 3 complexes reveal the Cu-thionein rather than Zn-thionein character of this brain-specific mammalian metallothionein. FEBS J 281:1659–1678PubMedCrossRefGoogle Scholar
  103. 103.
    Lee SJ, Park MH, Kim HJ, Koh JY (2010) Metallothionein-3 regulates lysosomal function in cultured astrocytes under both normal and oxidative conditions. Glia 58:1186–1196PubMedCrossRefGoogle Scholar
  104. 104.
    Bacolod MD, Fehdrau R, Johnson SP, Bullock NS, Bigner DD, Colvin M, Friedman HS (2009) BCNU-sequestration by metallothioneins may contribute to resistance in a medulloblastoma cell line. Cancer Chemother Pharmacol 63:753–758PubMedCrossRefGoogle Scholar
  105. 105.
    Florianczyk B, Osuchowski J, Kaczmarczyk R, Trojanowski T, Stryjecka-Zimmer M (2003) Influence of metallothioneins on zinc and copper distribution in brain tumours. Folia Neuropathol 41:11–14PubMedGoogle Scholar
  106. 106.
    Maier H, Jones C, Jasani B, Ofner D, Zelger B, Schmid KW, Budka H (1997) Metallothionein overexpression in human brain tumours. Acta Neuropathol 94:599–604PubMedCrossRefGoogle Scholar
  107. 107.
    Peyre M, Commo F, Dantas-Barbosa C, Andreiuolo F, Puget S, Lacroix L, Drusch F, Scott V, Varlet P, Mauguen A, et al. (2010) Portrait of ependymoma recurrence in children: biomarkers of tumor progression identified by dual-color microarray-based gene expression analysis. PLoS One 5:1–15CrossRefGoogle Scholar
  108. 108.
    Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Chabottaux V, Noel A (2007) Breast cancer progression: insights into multifaceted matrix metalloproteinases. Clin Exp Metastasis 24:647–656PubMedCrossRefGoogle Scholar
  110. 110.
    Xu YM, Zhong ZW, Yuan J, Zhang ZH, Wei QT, Song WZ, Chen HW (2013) Collaborative overexpression of matrix metalloproteinase-1 and vascular endothelial growth factor-C predicts adverse prognosis in patients with gliomas. Cancer Epidemiol 37:697–702PubMedCrossRefGoogle Scholar
  111. 111.
    Ulasov I, Yi RY, Guo D, Sarvaiya P, Cobbs C (2014) The emerging role of MMP14 in brain tumorigenesis and future therapeutics. Biochim Biophys Acta-Rev Cancer 1846:113–120CrossRefGoogle Scholar
  112. 112.
    Wang L, Yuan J, Tu YY, Mao XG, He SM, Fu GQ, Zong JH, Zhang YS (2013) Co-expression of MMP-14 and MMP-19 predicts poor survival in human glioma. Clin Transl Oncol 15:139–145PubMedCrossRefGoogle Scholar
  113. 113.
    Xie TX, Huang FJ, Aldape KD, Kang SH, Liu AG, Gershenwald JE, Xie KP, Sawaya R, Huang SY (2006) Activation of Stat3 in human melanoma promotes brain metastasis. Cancer Res 66:3188–3196PubMedCrossRefGoogle Scholar
  114. 114.
    Stark AM, Anuszkiewicz B, Mentlein R, Yoneda T, Mehdorn HM, Held-Feindt J (2007) Differential expression of matrix metalloproteinases in brain- and bone-seeking clones of metastatic MDA-MB-231 breast cancer cells. J Neuro-Oncol 81:39–48CrossRefGoogle Scholar
  115. 115.
    Mendes O, Kim HT, Stoica G (2005) Expression of MMP2, MMP9 and MMP3 in breast cancer brain metastasis in a rat model. Clin Exp Metastasis 22:237–246PubMedCrossRefGoogle Scholar
  116. 116.
    Hu L, Zhang JQ, Zhu HB, Min J, Feng YM, Zhang HL (2010) Biological characteristics of a specific brain metastatic cell line derived from human lung adenocarcinoma. Med Oncol 27:708–714PubMedCrossRefGoogle Scholar
  117. 117.
    Liu H, Kato Y, Erzinger SA, Kiriakova GM, Qian YZ, Palmieri D, Steeg PS, Price JE (2012) The role of MMP-1 in breast cancer growth and metastasis to the brain in a xenograft model. BMC Cancer 12:1–11CrossRefGoogle Scholar
  118. 118.
    Rooprai HK, Rucklidge GJ, Panou C, Pilkington GJ (2000) The effects of exogenous growth factors on matrix metalloproteinase secretion by human brain tumour cells. Br J Cancer 82:52–55PubMedCrossRefGoogle Scholar
  119. 119.
    Bodey B, Siegel SE, Kaiser HE (2000) Matrix metalloproteinase expression in childhood astrocytomas. Anticancer Res 20:3287–3292PubMedGoogle Scholar
  120. 120.
    Snuderl M, Chi SN, De Santis SM, Stemmer-Rachamimov AO, Betensky RA, De Girolami U, Kieran MW (2008) Prognostic value of tumor microinvasion and metalloproteinases expression in intracranial pediatric ependymomas. J Neuropathol Exp Neurol 67:911–920PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Xia ZQ, Liu WQ, Li SD, Jia G, Zhang YQ, Li CD, Ma ZY, Tian JH, Gong J (2011) Expression of matrix metalloproteinase-9, type IV collagen and vascular endothelial growth factor in adamantinous craniopharyngioma. Neurochem Res 36:2346–2351PubMedCrossRefGoogle Scholar
  122. 122.
    Nardinocchi L, Puca R, Sacchi A, Rechavi G, Givol D, D'Orazi G (2009) Targeting hypoxia in cancer cells by restoring homeodomain interacting protein-kinase 2 and p53 activity and suppressing HIF-1 alpha. PLoS One 4:1–12CrossRefGoogle Scholar
  123. 123.
    Babula P, Masarik M, Adam V, Eckschlager T, Stiborova M, Trnkova L, Skutkova H, Provaznik I, Hubalek J, Kizek R (2012) Mammalians’ metallothioneins and their properties and functions. Metallomics 4:739–750PubMedCrossRefGoogle Scholar
  124. 124.
    Zhu J, Wan H, Xue CQ, Jiang T, Qian C, Zhang YQ (2013) Histone deacetylase 3 implicated in the pathogenesis of children glioma by promoting glioma cell proliferation and migration. Brain Res 1520:15–22PubMedCrossRefGoogle Scholar
  125. 125.
    Campos B, Bermejo JL, Han L, Felsberg J, Ahmadi R, Grabe N, Reifenberger G, Unterberg A, Herold-Mende C (2011) Expression of nuclear receptor corepressors and class I histone deacetylases in astrocytic gliomas. Cancer Sci 102:387–392PubMedCrossRefGoogle Scholar
  126. 126.
    Chen CH, Chang YJ, Ku MSB, Chung KT, Yang JT (2011) Enhancement of temozolomide-induced apoptosis by valproic acid in human glioma cell lines through redox regulation. J Mol Med 89:303–315PubMedCrossRefGoogle Scholar
  127. 127.
    Mirlohi S, Duncan SE, Harmon M, Case D, Lesser G, Dietrich AM (2015) Analysis of salivary fluid and chemosensory functions in patients treated for primary malignant brain tumors. Clin Oral Investig 19:127–137PubMedCrossRefGoogle Scholar
  128. 128.
    el-Yazigi A, Al-Saleh I, Al-Mefty O (1986) Concentrations of zinc, iron, molybdenum, arsenic, and lithium in cerebrospinal fluid of patients with brain tumors. Clin Chem 32:2187–2190PubMedGoogle Scholar
  129. 129.
    Palm R, Hallmans G (1982) Zinc concentrations in the cerebrospinal-fluid of normal adults and patients with neurological diseases. J Neurol Neurosurg Psychiatry 45:685–690PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Vyslouzilova L, Krizkova S, Anyz J, Hynek D, Hrabeta J, Kruseova J, Eckschlager T, Adam V, Stepankova O, Kizek R (2013) Use of brightness wavelet transformation for automated analysis of serum metallothioneins- and zinc-containing proteins by Western blots to subclassify childhood solid tumours. Electrophoresis 34:1637–1648PubMedCrossRefGoogle Scholar
  131. 131.
    Krezel A, Maret WG (2008) Thionein/metallothionein control Zn(II) availability and the activity of enzymes. J Biol Inorg Chem 13:401–409PubMedCrossRefGoogle Scholar
  132. 132.
    Cherian MG, Kang YJ (2006) Metallothionein and liver cell regeneration. Exp Biol Med 231:138–144Google Scholar
  133. 133.
    Feng W, Cai J, Pierce WM, Franklin RB, Maret W, Benz FW, Kang YJ (2005) Metallothionein transfers zinc to mitochondrial aconitase through a direct interaction in mouse hearts. Biochem Biophys Res Commun 332:853–858PubMedCrossRefGoogle Scholar
  134. 134.
    Haga A, Nagase H, Kito H, Sato T (1996) Effect of metallothioneins on transformation of gelatinase A from human fibroblast WI-38 cells. Cancer Lett 105:175–180PubMedCrossRefGoogle Scholar
  135. 135.
    Haga A, Nagase H, Kito H, Sato T (1996) Effect of metallothioneins on collagenolytic activity of tumor gelatinase B. Cancer Res Ther Control 5:17–22Google Scholar
  136. 136.
    Haga A, Nagase H, Kito H, Sato T (1996) Enhanced invasiveness of tumour cells after host exposure to heavy metals. Eur J Cancer 32A:2342–2347PubMedCrossRefGoogle Scholar
  137. 137.
    Scaruffi P, Morandi F, Gallo F, Stigliani S, Parodi S, Moretti S, Bonassi S, Fardin P, Garaventa A, Zanazzo G, et al. (2012) Bone marrow of neuroblastoma patients shows downregulation of CXCL12 expression and presence of IFN signature. Pediatr Blood Cancer 59:44–51PubMedCrossRefGoogle Scholar
  138. 138.
    Sandoval JA, Hoelz DJ, Woodruff HA, Powell RL, Jay CL, Grosfeld JL, HickeyD RJ, Malkas LH (2006) Novel peptides secreted from human neuroblastoma: useful clinical tools? J Pediatr Surg 41:245–251PubMedCrossRefGoogle Scholar
  139. 139.
    Bautista F, Paci A, Minard-Colin V, Dufour C, Grill J, Lacroix L, Varlet P, Valteau-Couanet D, Geoerger B (2014) Vemurafenib in pediatric patients with BRAFV600E mutated high-grade gliomas. Pediatr Blood Cancer 61:1101–1103PubMedCrossRefGoogle Scholar
  140. 140.
    Romer JT, Kimura H, Magdaleno S, Sasai K, Fuller C, Baines H, Connelly M, Stewart CF, Gould S, Rubin LL, et al. (2004) Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/−) p53(−/−) mice. Cancer Cell 6:229–240PubMedCrossRefGoogle Scholar
  141. 141.
    Raju GP (2011) Arsenic: a potentially useful poison for hedgehog-driven cancers. J Clin Invest 121:14–16PubMedCrossRefGoogle Scholar
  142. 142.
    Roosen N, Doz F, Yeomans KL, Dougherty DV, Rosenblum ML (1994) Effect of pharmacological doses of zinc on the therapeutic index of brain-tumor chemotherapy with carmustine. Cancer Chemother Pharmacol 34:385–392PubMedCrossRefGoogle Scholar
  143. 143.
    Yamagata T, Nakamura Y, Yamagata Y, Nakanishi M, Matsunaga K, Nakanishi H, Nishimoto T, Minakata Y, Mune M, Yukawa S (2003) The pilot trial of the prevention of the increase in electrical taste thresholds by zinc containing fluid infusion during chemotherapy to treat primary lung cancer. J Exp Clin Cancer Res 22:557–563PubMedGoogle Scholar
  144. 144.
    Yao YL, Ma J, Xue YX, Wang P, Li Z, Li ZQ, Hu Y, Shang XL, Liu YH (2015) MiR-449a exerts tumor-suppressive functions in human glioblastoma by targeting Myc-associated zinc-finger protein. Mol Oncol 9:640–656PubMedCrossRefGoogle Scholar
  145. 145.
    Ma J, Yao YL, Wang P, Liu YH, Zhao LN, Li Z, Li ZQ, Xue YX (2014) MiR-181a regulates blood-tumor barrier permeability by targeting Kruppel-like factor 6. J Cereb Blood Flow Metab 34:1826–1836PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Zhao LN, Wang P, Liu YH, Ma J, Xue YX (2015) miR-34c regulates the permeability of blood-tumor barrier via MAZ-mediated expression changes of ZO-1, occludin, and claudin-5. J Cell Physiol 230:716–731PubMedCrossRefGoogle Scholar
  147. 147.
    Kennette W, Collins OM, Zalups RK, Koropatnick J (2005) Basal and zinc-induced metallothionein in resistance to cadmium, cisplatin, zinc, and tertButyl hydroperoxide: studies using MT knockout and antisense-downregulated MT in mammalian cells. Toxicol Sci 88:602–613PubMedCrossRefGoogle Scholar
  148. 148.
    Anzellotti AI, Farrell NP (2008) Zinc metalloproteins as medicinal targets. Chem Soc Rev 37:1629–1651PubMedCrossRefGoogle Scholar
  149. 149.
    Jin YL, Xiao WZ, Song TT, Feng GJ, Dai ZS (2016) Expression and prognostic significance of p53 in glioma patients: a meta-analysis. Neurochem Res 41:1723–1731PubMedCrossRefGoogle Scholar
  150. 150.
    Tashakori M, Zhang Y, Xiong SB, You MJ, Lozano G (2016) p53 activity dominates that of p73 upon Mdm4 loss in development and tumorigenesis. Mol Cancer Res 14:56–65PubMedCrossRefGoogle Scholar
  151. 151.
    Waye S, Naeem A, Choudhry MU, Parasido E, Tricoli L, Sivakumar A, Mikhaiel JP, Yenugonda V, Rodriguez OC, Karam SD, et al. (2015) The p53 tumor suppressor protein protects against chemotherapeutic stress and apoptosis in human medulloblastoma cells. Aging-Us 7:854–868CrossRefGoogle Scholar
  152. 152.
    Pei J, Park IH, Ryu HH, Li SY, Li CH, Lim SH, Wen M, Jang WY, Jung S (2015) Sublethal dose of irradiation enhances invasion of malignant glioma cells through p53-MMP 2 pathway in U87MG mouse brain tumor model. Radiat Oncol 10Google Scholar
  153. 153.
    Bartesaghi S, Graziano V, Galavotti S, Henriquez NV, Betts J, Saxena J, Deli A, Karlsson A, Martins LM, Capasso M, et al. (2015) Inhibition of oxidative metabolism leads to p53 genetic inactivation and transformation in neural stem cells. Proc Natl Acad Sci U S A 112:1059–1064PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Cohen AL, Colman H (2015) Glioma biology and molecular markers. In: Parsa A (ed) Raizer J. Current understanding and treatment of gliomas Springer, Dordrecht, pp. 15–30Google Scholar
  155. 155.
    Checler F, da Costa CA (2014) p53 in neurodegenerative diseases and brain cancers. Pharmacol Ther 142:99–113PubMedCrossRefGoogle Scholar
  156. 156.
    Narla S, Uppin MS, Saradhi MV, Sahu BP, Purohit AK, Sundaram C (2014) Assessment of expression of epidermal growth factor receptor and p53 in meningiomas. Neurol India 62:37–41PubMedCrossRefGoogle Scholar
  157. 157.
    England B, Huang TG, Karsy M (2013) Current understanding of the role and targeting of tumor suppressor p53 in glioblastoma multiforme. Tumor Biol 34:2063–2074CrossRefGoogle Scholar
  158. 158.
    Takahashi R, Giannini C, Sarkaria JN, Schroeder M, Rogers J, Mastroeni D, Scrable H (2013) p53 isoform profiling in glioblastoma and injured brain. Oncogene 32:3165–3174PubMedCrossRefGoogle Scholar
  159. 159.
    Louis DN (1994) The p53 gene and protein in human brain-tumors. J Neuropathol Exp Neurol 53:11–21PubMedCrossRefGoogle Scholar
  160. 160.
    Tomkova K, Tomka M, Zajac V (2008) Contribution of p53, p63, and p73 to the developmental diseases and cancer minireview. Neoplasma 55:177–181PubMedGoogle Scholar
  161. 161.
    Fatt MP, Cancino GI, Miller FD, Kaplan DR (2014) p63 and p73 coordinate p53 function to determine the balance between survival, cell death, and senescence in adult neural precursor cells. Cell Death Differ 21:1546–1559PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Rushing EJ, Olsen C, Man YG (2008) Correlation of p63 immunoreactivity with tumor grade in meningiomas. Int J Surg Pathol 16:38–42PubMedCrossRefGoogle Scholar
  163. 163.
    Antonelli A, Lenzi L, Nakagawara A, Osaki T, Chiaretti A, Aloe L (2007) Tumor suppressor proteins are differentially affected in human ependymoblastoma and medulloblastoma cells exposed to nerve growth factor. Cancer Investig 25:94–101CrossRefGoogle Scholar
  164. 164.
    Kamiya M, Nakazato Y (2002) The expression of p73, p21 and MDM2 proteins in gliomas. J Neuro-Oncol 59:143–149CrossRefGoogle Scholar
  165. 165.
    Loiseau H, Arsaut J, Demotes-Mainard J (1999) p73 gene transcripts in human brain tumors: overexpression and altered splicing in ependymomas. Neurosci Lett 263:173–176PubMedCrossRefGoogle Scholar
  166. 166.
    Kirsch M, Zhu JJ, Black PM (1997) Analysis of the BRCA1 and BRCA2 genes in sporadic meningiomas. Genes Chromosomes & Cancer 20:53–59CrossRefGoogle Scholar
  167. 167.
    Bencokova Z, Pauron L, Devic C, Joubert A, Gastaldo J, Massart C, Balosso J, Foray N (2008) Molecular and cellular response of the most extensively used rodent glioma models to radiation and/or cisplatin. J Neuro-Oncol 86:13–21CrossRefGoogle Scholar
  168. 168.
    Dodgshun AJ, Sexton-Oates A, Saffery R, Sullivan MJ (2016) Biallelic FANCD1/BRCA2 mutations predisposing to glioblastoma multiforme with multiple oncogenic amplifications. Cancer Genetics 209:53–56PubMedCrossRefGoogle Scholar
  169. 169.
    Lampert K, Machein U, Machein MR, Conca W, Peter HH, Volk B (1998) Expression of matrix metalloproteinases and their tissue inhibitors in human brain tumors. Am J Pathol 153:429–437PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Nakagawa T, Kubota T, Kabuto M, Sato K, Kawano H, Hayakawa T, Okada Y (1994) Production of matrix metalloproteinases and tissue inhibitor of metalloproteinases-1 by human brain-tumors. J Neurosurg 81:69–77PubMedCrossRefGoogle Scholar
  171. 171.
    Forsyth PA, Wong H, Laing TD, Rewcastle NB, Morris DG, Muzik H, Leco KJ, Johnston RN, Brasher PMA, Sutherland G, et al. (1999) Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Cancer 79:1828–1835PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Yamamoto M, Mohanam S, Sawaya R, Fuller GN, Seiki M, Sato H, Gokaslan ZL, Liotta LA, Nicolson GL, Rao JS (1996) Differential expression of membrane-type matrix metalloproteinase and its correlation with gelatinase A activation in human malignant brain tumors in vivo and in vitro. Cancer Res 56:384–392PubMedGoogle Scholar
  173. 173.
    Ulasov I, Yi RY, Guo D, Sarvaiya P, Cobbs C (2014) The emerging role of MMP14 in brain tumorigenesis and future therapeutics. Biochimica Et Biophysica Acta-Reviews on Cancer 1846:113–120CrossRefGoogle Scholar
  174. 174.
    Liu MF, Hu YY, Jin T, Xu K, Wang SH, Du GZ, Wu BL, Li LY, Xu LY, Li EM, et al. (2015) Matrix metalloproteinase-9/neutrophil gelatinase-associated lipocalin complex activity in human glioma samples predicts tumor presence and clinical prognosis. Dis Markers. doi: 10.1155/2015/138974 Google Scholar
  175. 175.
    Musumeci G, Magro G, Cardile V, Coco M, Marzagalli R, Castrogiovanni P, Imbesi R, Graziano ACE, Barone F, Di Rosa M, et al. (2015) Characterization of matrix metalloproteinase-2 and-9, ADAM-10 and N-cadherin expression in human glioblastoma multiforme. Cell Tissue Res 362:45–60PubMedCrossRefGoogle Scholar
  176. 176.
    Li QB, Chen BS, Cai JQ, Sun Y, Wang GZ, Li YL, Li RY, Feng Y, Han B, Li JL, et al. (2016) Comparative analysis of matrix metalloproteinase family members reveals that MMP9 predicts survival and response to temozolomide in patients with primary glioblastoma. PLoS One 11Google Scholar
  177. 177.
    Sakr M, Takino T, Sabit H, Nakada M, Li ZC, Sato H (2016) miR-150-5p and miR-133a suppress glioma cell proliferation and migration through targeting membrane-type-1 matrix metalloproteinase. Gene 587:155–162PubMedCrossRefGoogle Scholar
  178. 178.
    Chung HJ, Choi YE, Kim ES, Han YH, Park MJ, Bae IH (2015) miR-29b attenuates tumorigenicity and stemness maintenance in human glioblastoma multiforme by directly targeting BCL2L2. Oncotarget 6:18429–18444PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Somasundaram A, Ardanowski N, Opalak CF, Fillmore HL, Chidambaram A, Broaddus WC (2014) Wilms tumor 1 gene, CD97, and the emerging biogenetic profile of glioblastoma. Neurosurg Focus 37Google Scholar
  180. 180.
    Kijima N, Hashimoto N, Chiba Y, Fujimoto Y, Sugiyama H, Yoshimine T (2016) Functional roles of Wilms’ tumor 1 (WT1) in malignant brain tumors. Wilms Tumor DOI:261–272Google Scholar
  181. 181.
    Dennis SL, Manji SSM, Carrington DP, Scarcella DL, Ashley DM, Smith PJ, Algar EM (2002) Expression and mutation analysis of the Wilms’ tumor 1 gene in human neural tumors. Int J Cancer 97:713–715PubMedCrossRefGoogle Scholar
  182. 182.
    Mehrian-Shai R, Yalon M, Simon AJ, Eyal E, Pismenyuk T, Moshe I, Constantini S, Toren A (2015) High metallothionein predicts poor survival in glioblastoma multiforme. BMC Med Genet 8Google Scholar
  183. 183.
    Hiura T, Khalid H, Yamashita H, Tokunaga Y, Yasunaga A, Shibata S (1998) Immunohistochemical analysis of metallothionein in astrocytic tumors in relation to tumor grade, proliferative potential, and survival. Cancer 83:2361–2369PubMedCrossRefGoogle Scholar
  184. 184.
    Florianczyk B, Osuchowski J, Kaczmarczyk R, Staroslawska E, Trojanowski T (2005) Distribution of metallothioneins in the brain neoplastic cells. Folia Neuropathol 43:91–96PubMedGoogle Scholar
  185. 185.
    Dasari VR, Kaur K, Velpula KK, Gujrati M, Fassett D, Klopfenstein JD, Dinh DH, Rao JS (2010) Upregulation of PTEN in glioma cells by cord blood mesenchymal stem cells inhibits migration via downregulation of the PI3K/Akt pathway. PLoS One 5Google Scholar
  186. 186.
    Zhang JH, Wu G, Miller CP, Tatevossian RG, Dalton JD, Tang B, Orisme W, Punchihewa C, Parker M, Qaddoumi I, et al. (2013) Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 45:602-+PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Rodriguez FJ, Lim KS, Bowers D, Eberhart CG (2013) Pathological and molecular advances in pediatric low-grade astrocytoma. In: Abbas AK, Galli SJ, Howley PM (eds) Annual review of pathology: mechanisms of disease, Vol 8 Annual Reviews, Palo Alto, pp. 361–379Google Scholar
  188. 188.
    Liu ZG, Liu YG, Li LL, Xu ZK, Bi BB, Wang YY, Li JY (2014) MiR-7-5p is frequently downregulated in glioblastoma microvasculature and inhibits vascular endothelial cell proliferation by targeting RAF1. Tumor Biol 35:10177–10184CrossRefGoogle Scholar
  189. 189.
    Verreault M, Schmitt C, Goldwirt L, Pelton K, Haidar S, Levasseur C, Guehennec J, Knoff D, Labussiere M, Marie Y, et al. (2016) Preclinical efficacy of the MDM2 inhibitor RG7112 in MDM2-amplified and TP53 wild-type glioblastomas. Clin Cancer Res 22:1185–1196PubMedCrossRefGoogle Scholar
  190. 190.
    Reifenberger G, Liu L, Ichimura K, Schmidt EE, Collins VP (1993) Amplification and overexpression of the MDM2 gene in a subset of human-malignant gliomas without p53 mutations. Cancer Res 53:2736–2739PubMedGoogle Scholar
  191. 191.
    Suzuki SO, Iwaki T (2000) Amplification and overexpression of mdm2 gene in ependymomas. Mod Pathol 13:548–553PubMedCrossRefGoogle Scholar
  192. 192.
    Markert JM, Fuller CM, Gillespie GY, Bubien JK, McLean LA, Hong RL, Lee K, Gullans SR, Mapstone TB, Benos DJ (2001) Differential gene expression profiling in human brain tumors. Physiol Genomics 5:21–33PubMedGoogle Scholar
  193. 193.
    Kraus JA, Felsberg J, Tonn JC, Reifenberger G, Pietsch T (2002) Molecular genetic analysis of the TP53, PTEN, CDKN2A, EGFR, CDK4 and MDM2 tumour-associated genes in supratentorial primitive neuroectodermal tumours and glioblastomas of childhood. Neuropathol Appl Neurobiol 28:325–333PubMedCrossRefGoogle Scholar
  194. 194.
    Ranuncolo SM, Varela M, Morandi A, Lastiri J, Christiansen S, Joffe EBD, Pallotta MG, Puricelli L (2004) Prognostic value of Mdm2, p53 and p16 in patients with astrocytomas. J Neuro-Oncol 68:113–121CrossRefGoogle Scholar
  195. 195.
    Kafadar A, Kucukhuseyin O, Turan S, Yenilmez EN, Tunoglu S, Zeybek U, Kaynar MY, Kemerdere R, Yaylim I (2015) Distribution and effects of CDKN2 p16 540 C > G and 580 C > T, and MDM2 SNP309 T > G polymorphisms in patients with primary brain tumors. Anticancer Res 35:3933–3942PubMedGoogle Scholar
  196. 196.
    Wang CL, Wang JY, Liu ZY, Ma XM, Wang XW, Jin H, Zhang XP, Fu D, Hou LJ, Lu YC (2014) Ubiquitin-specific protease 2a stabilizes MDM4 and facilitates the p53-mediated intrinsic apoptotic pathway in glioblastoma. Carcinogenesis 35:1500–1509PubMedCrossRefGoogle Scholar
  197. 197.
    Sampieri K, Mencarelli MA, Epistolato MC, Toti P, Lazzi S, Bruttini M, De Francesco S, Longo I, Meloni I, Mari F, et al. (2008) Genomic differences between retinoma and retinoblastoma. Acta Oncol 47:1483–1492PubMedCrossRefGoogle Scholar
  198. 198.
    Rao SK, Edwards J, Joshi AD, Siu IM, Riggins GJ (2010) A survey of glioblastoma genomic amplifications and deletions. J Neuro-Oncol 96:169–179CrossRefGoogle Scholar
  199. 199.
    Perry C, Sklan EH, Soreq H (2004) CREB regulates AChE-R-induced proliferation of human glioblastoma cells. Neoplasia 6:279–286PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Mantamadiotis T, Papalexis N, Dworkin S (2012) CREB signalling in neural stem/progenitor cells: recent developments and the implications for brain tumour biology. BioEssays 34:293–300PubMedCrossRefGoogle Scholar
  201. 201.
    Daniel P, Filiz G, Brown DV, Hollande F, Gonzales M, D'Abaco G, Papalexis N, Phillips WA, Malaterre J, Ramsay RG et al (2014) Selective CREB-dependent cyclin expression mediated by the PI3K and MAPK pathways supports glioma cell proliferation. Oncogenesis 3: 1–10Google Scholar
  202. 202.
    Zhang JQ, Yao QH, Kuang YQ, Ma Y, Yang LB, Huang HD, Cheng JM, Yang T, Liu EY, Liang L, et al. (2014) Prognostic value of coexistence of abnormal expression of micro-RNA-200b and cyclic adenosine monophosphate-responsive element-binding protein 1 in human astrocytoma. Hum Pathol 45:2154–2161PubMedCrossRefGoogle Scholar
  203. 203.
    Ajeawung NF, Maltais R, Jones C, Poirier D, Kamnasaran D (2013) Viability screen on pediatric low grade glioma cell lines unveils a novel anti-cancer drug of the steroid biosynthesis inhibitor family. Cancer Lett 330:96–105PubMedCrossRefGoogle Scholar
  204. 204.
    Zhao RJ, Zhang XL, Chu SG, Zhang M, Kong LF, Wang Y (2016) Clinicopathologic and neuroradiologic studies of papillary glioneuronal tumors. Acta Neurochir 158:695–702PubMedCrossRefGoogle Scholar
  205. 205.
    Lin T, Wang M, Jiang HS, Liu EZ (2015) The expression of P53, MGMT and EGFR in brain glioma and clinical significance. J Biol Regul Homeost Agents 29:143–149PubMedGoogle Scholar
  206. 206.
    Oka H, Utsuki S, Tanizaki Y, Hagiwara H, Miyajima Y, Sato K, Kusumi M, Kijima C, Fujii K (2013) Clinicopathological features of human brainstem gliomas. Brain Tumor Pathology 30:1–7PubMedCrossRefGoogle Scholar
  207. 207.
    Chin L, Meyerson M, Aldape K, Bigner D, Mikkelsen T, VandenBerg S, Kahn A, Penny R, Ferguson ML, Gerhard DS, et al. (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068CrossRefGoogle Scholar
  208. 208.
    Brandes AA, Franceschi E, Tosoni A, Blatt V, Pession A, Tallini G, Bertorelle R, Bartolini S, Calbucci F, Andreoli A, et al. (2008) MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol 26:2192–2197PubMedCrossRefGoogle Scholar
  209. 209.
    Silber JR, Mueller BA, Ewers TG, Berger MS (1993) Comparison of O6-methylguanine-DNA methyltransferase activity in brain-tumors and adjacent normal brain. Cancer Res 53:3416–3420PubMedGoogle Scholar
  210. 210.
    Kolodziej MA, Weischer C, Reinges MHT, Uhl E, Weigand MA, Schwarm FP, Schanzer A, Acker T, Quint K, Uhle F, et al. (2016) NDRG2 and NDRG4 expression is altered in glioblastoma and influences survival in patients with MGMT-methylated tumors. Anticancer Res 36:887–897PubMedGoogle Scholar
  211. 211.
    Horing E, Harter PN, Seznec J, Schittenhelm J, Buhring HJ, Bhattacharyya S, von Hattingen E, Zachskorn C, Mittelbronn M, Naumann U (2012) The “go or grow” potential of gliomas is linked to the neuropeptide processing enzyme carboxypeptidase E and mediated by metabolic stress. Acta Neuropathol 124:83–97PubMedCrossRefGoogle Scholar
  212. 212.
    Denis CJ, Lambeir AM (2013) The potential of carboxypeptidase M as a therapeutic target in cancer. Expert Opin Ther Targets 17:265–279PubMedCrossRefGoogle Scholar
  213. 213.
    Verbovsek U, Motaln H, Rotter A, Atai NA, Gruden K, Van Noorden CJF, Lah TT (2014) Expression analysis of all protease genes reveals cathepsin K to be overexpressed in glioblastoma Plos One:9Google Scholar
  214. 214.
    Haapasalo JA, Nordfors KM, Hilvo M, Rantala IJ, Soini Y, Parkkila AK, Pastorekova S, Pastorek J, Parkkila SM, Haapasalo HK (2006) Expression of carbonic anhydrase IX in astrocytic tumors predicts poor prognosis. Clin Cancer Res 12:473–477PubMedCrossRefGoogle Scholar
  215. 215.
    Tatum JL, Kelloff GJ, Gillies RJ, Arbeit JM, Brown JM, Chao KSC, Chapman JD, Eckelman WC, Fyles AW, Giaccia AJ, et al. (2006) Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol 82:699–757PubMedCrossRefGoogle Scholar
  216. 216.
    Said HM, Supuran CT, Hageman C, Staab A, Polat B, Katzer A, Scozzafava A, Anacker J, Flentje M, Vordermark D (2010) Modulation of carbonic anhydrase 9 (CA9) in human brain cancer. Curr Pharm Des 16:3288–3299PubMedCrossRefGoogle Scholar
  217. 217.
    Nordfors K, Haapasalo J, Korja M, Niemela A, Laine J, Parkkila AK, Pastorekova S, Pastorek J, Waheed A, Sly WS et al (2010) The tumour-associated carbonic anhydrases CA II, CA IX and CA XII in a group of medulloblastomas and supratentorial primitive neuroectodermal tumours: an association of CA IX with poor prognosis. Bmc Cancer 10: 1–10Google Scholar
  218. 218.
    Proescholdt MA, Merrill MJ, Stoerr EM, Lohmeier A, Pohl F, Brawanski A (2012) Function of carbonic anhydrase IX in glioblastoma multiforme. Neuro-Oncology 14:1357–1366PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Li XN, Shu Q, Su JMF, Perlaky L, Blaney SM, Lau CC (2005) Valproic acid induces growth arrest, apoptosis, and senescence in medulloblastomas by increasing histone hyperacetylation and regulating expression of p21Cip1, CDK4, and CMYC. Mol Cancer Ther 4:1912–1922PubMedCrossRefGoogle Scholar
  220. 220.
    Lee SJ, Lindsey S, Graves B, Yoo S, Olson JM, Langhans SA (2013) Sonic hedgehog-induced histone deacetylase activation is required for cerebellar granule precursor hyperplasia in medulloblastoma Plos One:8Google Scholar
  221. 221.
    Ecker J, Oehme I, Mazitschek R, Korshunov A, Kool M, Hielscher T, Kiss J, Selt F, Konrad C, Lodrini M et al (2015) Targeting class I histone deacetylase 2 in MYC amplified group 3 medulloblastoma. Acta Neuropathologica Communications 3: 1–12Google Scholar
  222. 222.
    Kesari S (2011) Understanding glioblastoma tumor biology: the potential to improve current diagnosis and treatments. Semin Oncol 38:S2–S10PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jan Hrabeta
    • 1
  • Tomas Eckschlager
    • 1
  • Marie Stiborova
    • 2
  • Zbynek Heger
    • 3
    • 4
  • Sona Krizkova
    • 3
    • 4
  • Vojtech Adam
    • 3
    • 4
    Email author
  1. 1.Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, University Hospital MotolCharles UniversityPrague 5Czech Republic
  2. 2.Department of Biochemistry, Faculty of ScienceCharles UniversityPrague 2Czech Republic
  3. 3.Department of Chemistry and BiochemistryMendel University in BrnoBrnoCzech Republic
  4. 4.Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic

Personalised recommendations