Skip to main content

Advertisement

Log in

C-myc overexpression drives melanoma metastasis by promoting vasculogenic mimicry via c-myc/snail/Bax signaling

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

c-Myc is a well-characterized proto-oncogene that induces cellular transformation and modulates programmed cell death. While recent studies have demonstrated high expression of c-Myc protein in advanced and metastatic melanoma, the clinical and biological implications remain to be fully elucidated. In this study, we investigated the effect of c-Myc overexpression in melanoma tumorigenesis. Clinicopathological analysis demonstrated that c-Myc expression positively correlated with the formation of vasculogenic mimicry (VM) and linearly patterned programmed cell necrosis (LPPCN). Clinically, high c-Myc expression was significantly associated with distant metastasis and poor prognosis, while biologically, c-Myc overexpression led to significant increases in cell motility, invasiveness and metastasis. Moreover, c-Myc induced the formation of VM and promoted the expression of epithelial-mesenchymal transition (EMT)-associated protein Snail both in vivo and in vitro. High expression of c-Myc increased Bax expression in hypoxic conditions and induced cell apoptosis. Taken together, we conclude that c-Myc overexpression promotes the formation of VM by EMT and LPPCN in melanoma. Our improved understanding of the clinical and biological effects of c-Myc overexpression in melanoma highlights the incomplete understanding of this oncogene, and indicates that c-Myc is a potential therapeutic target of this disease.

Key message

  • High c-Myc expression is associated with tumor metastasis and poor prognosis in human melanoma.

  • c-Myc upregulates Snail expression to promote EMT via the TGF-β/Snail/Ecadherin signal pathway.

  • c-Myc leads to cell death by upregulating Bax expression causing a lower Bcl2/Bax ratio under severe hypoxic conditions.

  • c-Myc promotes vasculogenic mimicry and linearly patterned programmed cell necrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Caini S, Boniol M, Botteri E, Tosti G, Bazolli B, Russell-Edu W, Giusti F, Testori A, Gandini S (2014) The risk of developing a second primary cancer in melanoma patients: a comprehensive review of the literature and meta-analysis. J Dermatol Sci 75:3–9

    Article  PubMed  Google Scholar 

  2. Ji H, Cao R, Yang Y, Zhang Y, Iwamoto H, Lim S, Nakamura M, Andersson P, Wang J, Sun Y, et al (2014) TNFR1 mediates TNF-α-induced tumour lymphangiogenesis and metastasis by modulating VEGF-C-VEGFR3 signalling. Nat Commun 5:4944

    Article  CAS  PubMed  Google Scholar 

  3. Hedlund EM, Yang X, Zhang Y, Yang Y, Shibuya M, Zhong W, Sun B, Liu Y, Hosaka K, Cao Y (2013) Tumor cell-derived placental growth factor sensitizes antiangiogenic and antitumor effects of anti-VEGF drugs. Proc Natl Acad Sci U S A 110:654–659

    Article  CAS  PubMed  Google Scholar 

  4. Folkman J, Ryeom S (2005) Is oncogene addiction angiogenesis-dependent? Cold Spring Harb Symp Quant Biol 70:389–397

    Article  CAS  PubMed  Google Scholar 

  5. Cao Y (2016) Future options of anti-angiogenic cancer therapy. Chin J Cancer 35:21

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cao Y (2014) VEGF-targeted cancer therapeutics-paradoxical effects in endocrine organs. Nat Rev Endocrinol 10:530–539

    Article  CAS  PubMed  Google Scholar 

  7. Cao Y, Arbiser J, D’Amato RJ, D’Amore PA, Ingber DE, Kerbel R, Klagsbrun M, Lim S, Moses MA, Zetter B, et al (2011) Forty-year journey of angiogenesis translational research. Sci Transl Med 3:114rv113

    Google Scholar 

  8. Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe’er J, Trent JM, Meltzer PS, Hendrix MJ (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155:739–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cao ZF, Bao MM, Miele L, Sarkar FH, Wang ZW, Zhou QS (2013) Tumour vasculogenic mimicry is associated with poor prognosis of human cancer patients: a systemic review and meta-analysis. Eur J Cancer 49:3914–3923

    Article  PubMed  Google Scholar 

  10. Meng J, Sun B, Zhao X, Zhang D, Zhao X, Gu Q, Dong X, Zhao N, Liu P, Liu Y (2014) Doxycycline as an inhibitor of the epithelial-to-mesenchymal transition and vasculogenic mimicry in hepatocellular carcinoma. Mol Cancer Ther 13:3107–3122

    Article  CAS  PubMed  Google Scholar 

  11. Sun T, Zhao N, Zhao XL, Gu Q, Zhang SW, Che N, Wang XH, Du J, Liu YX, Sun BC (2010) Expression and functional significance of Twist1 in hepatocellular carcinoma: its role in vasculogenic mimicry. Hepatology 51:545–556

    Article  CAS  PubMed  Google Scholar 

  12. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang S, Li M, Zhang D, Xu S, Wang X, Liu Z, Zhao X, Sun B (2009) Hypoxia influences linearly patterned programmed cell necrosis and tumor blood supply patterns formation in melanoma. Lab Investig 89:575–586

    Article  CAS  PubMed  Google Scholar 

  14. Hoffman B, Liebermann DA (2008) Apoptotic signaling by c-MYC. Oncogene 27:6462–6472

    Article  CAS  PubMed  Google Scholar 

  15. Evan G, Littlewood T (1998) A matter of life and cell death. Science 281:1317–1322

    Article  CAS  PubMed  Google Scholar 

  16. Blum D, Hao H, McCarthy M, Reproducibility Project: Cancer B (2015) Registered report: transcriptional amplification in tumor cells with elevated c-Myc. Elife 4.e04024. doi:10.7554/eLife.04024

  17. Meyer N, Penn LZ (2008) Reflecting on 25 years with MYC. Nat Rev Cancer 8:976–990

    Article  CAS  PubMed  Google Scholar 

  18. Kraehn GM, Utikal J, Udart M, Greulich KM, Bezold G, Kaskel P, Leiter U, Peter RU (2001) Extra c-myc oncogene copies in high risk cutaneous malignant melanoma and melanoma metastases. Br J Cancer 84:72–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao N, Sun BC, Zhao XL, Liu ZY, Sun T, Qiu ZQ, Gu Q, Che N, Dong XY (2012) Coexpression of Bcl-2 with epithelial-mesenchymal transition regulators is a prognostic indicator in hepatocellular carcinoma. Med Oncol 29:2780–2792

    Article  CAS  PubMed  Google Scholar 

  20. Lin X, Sun B, Zhu D, Zhao X, Sun R, Zhang Y, Zhang D, Dong X, Gu Q, Li Y, et al (2016) Notch4+ cancer stem-like cells promote the metastatic and invasive ability of melanoma. Cancer Sci. doi:10.1111/cas.12978

    Google Scholar 

  21. Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ, Double JA, Everitt J, Farningham DA, Glennie MJ, et al (2010) Guidelines for the welfare and use of animals in cancer research. Br J Cancer 102:1555–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Han C, Sun BU, Wang W, Cai WJ, Lou D, Sun Y, Zhao X (2010) A pilot study on morphology and the mechanism involved in linearly patterned programmed cell necrosis in melanoma. Oncol Lett 1:821–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Garayoa M, Martínez A, Lee S, Pío R, An WG, Neckers L, Trepel J, Montuenga LM, Ryan H, Johnson R, et al (2000) Hypoxia-inducible factor-1 (HIF-1) up-regulates Adrenomedullin expression in human tumor cell lines during oxygen deprivation: a possible promotion mechanism of carcinogenesis. Mol Endocrinol 14:848–862

    Article  CAS  PubMed  Google Scholar 

  24. Cascio S, Bartella V, Auriemma A, Johannes GJ, Russo A, Giordano A, Surmacz E (2008) Mechanism of leptin expression in breast cancer cells: role of hypoxia-inducible factor-1alpha. Oncogene 27:540–547

    Article  CAS  PubMed  Google Scholar 

  25. Dang CV (2012) MYC on the path to cancer. Cell 149:22–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rahl PB, Young RA (2014) MYC and transcription elongation. Cold Spring Harb Perspect Med 4:a020990

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang C, Tai Y, Lisanti MP, Liao DJ (2014) C-myc induction of programmed cell death may contribute to carcinogenesis. Cancer Biology & Therapy 11:615–626

    Article  CAS  Google Scholar 

  28. Chen D, Huang J, Zhang K, Pan B, Chen J, De W, Wang R, Chen L (2014) MicroRNA-451 induces epithelial-mesenchymal transition in docetaxel-resistant lung adenocarcinoma cells by targeting proto-oncogene c-myc. Eur J Cancer 50:3050–3067

    Article  CAS  PubMed  Google Scholar 

  29. Oloumi A, McPhee T, Dedhar S (2004) Regulation of E-cadherin expression and beta-catenin/Tcf transcriptional activity by the integrin-linked kinase. Biochim Biophys Acta 1691:1–15

    Article  CAS  PubMed  Google Scholar 

  30. Sun T, Sun BC, Zhao XL, Zhao N, Dong XY, Che N, Yao Z, Ma YM, Gu Q, Zong WK, et al (2011) Promotion of tumor cell metastasis and vasculogenic mimicry by way of transcription coactivation by Bcl-2 and Twist1: a study of hepatocellular carcinoma. Hepatology 54:1690–1706

    Article  CAS  PubMed  Google Scholar 

  31. Mitchell KO, Ricci MS, Miyashita T, Dicker DT, Jin Z, Reed JC, El-Deiry WS (2000) Bax is a transcriptional target and mediator of c-myc-induced apoptosis. Cancer Res 60:6318–6325

    CAS  PubMed  Google Scholar 

  32. Pelengaris S, Khan M, Evan GI (2002) Suppression of myc-induced apoptosis in beta cells exposes multiple oncogenic properties of myc and triggers carcinogenic progression. Cell 109:321–334

    Article  CAS  PubMed  Google Scholar 

  33. Westphal D, Dewson G, Czabotar PE, Kluck RM (2011) Molecular biology of Bax and Bak activation and action. Biochim Biophys Acta 1813:521–531

    Article  CAS  PubMed  Google Scholar 

  34. Wagner AJ, Small MB, Hay N (1993) Myc-mediated apoptosis is blocked by ectopic expression of Bcl-2. Mol Cell Biol 13:2432–2440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen C, Cai S, Wang G, Cao X, Yang X, Luo X, Feng Y, Hu J (2013) C-myc enhances colon cancer cell-mediated angiogenesis through the regulation of HIF-1alpha. Biochem Biophys Res Commun 430:505–511

    Article  CAS  PubMed  Google Scholar 

  36. Huang LE, Bindra RS, Glazer PM, Harris AL (2007) Hypoxia-induced genetic instability--a calculated mechanism underlying tumor progression. J Mol Med (Berl) 85:139–148

    Article  CAS  Google Scholar 

  37. Fer N, Melillo G (2011) The HIF-1alpha-c-myc pathway and tumorigenesis: evading the apoptotic gate-keeper. Cell Cycle 10:3228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brunelle JK, Santore MT, Budinger GR, Tang Y, Barrett TA, Zong WX, Kandel E, Keith B, Simon MC, Thompson CB, et al (2004) C-myc sensitization to oxygen deprivation-induced cell death is dependent on Bax/Bak, but is independent of p53 and hypoxia-inducible factor-1. J Biol Chem 279:4305–4312

    Article  CAS  PubMed  Google Scholar 

  39. Li S, Zhang J, Yang H, Wu C, Dang X, Liu Y (2015) Copper depletion inhibits CoCl2-induced aggressive phenotype of MCF-7 cells via downregulation of HIF-1 and inhibition of snail/twist-mediated epithelial-mesenchymal transition. Sci Rep 5:12410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fardin P, Barla A, Mosci S, Rosasco L, Verri A, Versteeg R, Caron HN, Molenaar JJ, Ora I, Eva A, et al (2010) A biology-driven approach identifies the hypoxia gene signature as a predictor of the outcome of neuroblastoma patients. Mol Cancer 9:185

    Article  PubMed  PubMed Central  Google Scholar 

  41. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, et al (2012) Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death 2012. Cell Death Differ 19:107–120

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was partly supported by the follow grants:

1) Key project of the National Natural Science Foundation of China (NO. 81230050);

2) The National Natural Science Foundation of China (NO. 81172046);

3) The National Natural Science Foundation of China (NO. 81173091);

4) The National Basic Research Program of China (973 Program, NO. 2010CB529403).

Author contribution statement

B.C.S. conceived the study, B.C.S., R.S. and X.L. designed experiments and wrote the manuscript. X.L., X.L.Z., X.M.Z., Q.G. and X.Y.D. performed experiments. D.W.Z. and D.F.Z. analyzed the data, Y.H.Z., R.S. and Y.L.L. collected the human pathological specimen of melanoma. All authors revised the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baocun Sun.

Ethics declarations

Disclosure

The authors declare that they have no conflict of interests.

Additional information

Xian Lin and Ran Sun contributed equally to this work.

Electronic supplementary material

ESM 1

(PDF 338 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Sun, R., Zhao, X. et al. C-myc overexpression drives melanoma metastasis by promoting vasculogenic mimicry via c-myc/snail/Bax signaling. J Mol Med 95, 53–67 (2017). https://doi.org/10.1007/s00109-016-1452-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-016-1452-x

Keywords

Navigation