Journal of Molecular Medicine

, Volume 94, Issue 11, pp 1229–1240 | Cite as

Mitochondrial aldehyde dehydrogenase 2 deficiency aggravates energy metabolism disturbance and diastolic dysfunction in diabetic mice

  • Cong Wang
  • Fan Fan
  • Quan Cao
  • Cheng Shen
  • Hong Zhu
  • Peng Wang
  • Xiaona Zhao
  • Xiaolei Sun
  • Zhen Dong
  • Xin Ma
  • Xiangwei liu
  • Shasha Han
  • Chaoneng Wu
  • Yunzeng Zou
  • Kai Hu
  • Junbo GeEmail author
  • Aijun SunEmail author
Original Article


Diabetes causes energy metabolism disturbance and may lead to cardiac dysfunction. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) protects cardiac function from myocardial damage. Therefore, understanding of its roles in diabetic heart is critical for developing new therapeutics targeting ALDH2 and mitochondrial function for diabetic hearts. This study investigated the impact of ALDH2 deficiency on diastolic function and energy metabolism in diabetic mice. Diabetes was induced in ALDH2 knockout and wild-type mice by streptozotocin. Cardiac function was determined by echocardiography. Glucose uptake, energy status, and metabolic profiles were used to evaluate cardiac energy metabolism. The association between ALDH2 polymorphism and diabetes was also analyzed in patients. Echocardiography revealed preserved systolic function and impaired diastolic function in diabetic ALDH2-deficient mice. Energy reserves (phosphocreatine/adenosine triphosphate ratio) were reduced in the diabetic mutants and were associated with diastolic dysfunction. Western blot analysis showed that diabetes induces accumulated lipid peroxidation products and escalated AMP-activated protein kinase–LKB1 pathway. Further, ALDH2 deficiency exacerbated the diabetes-induced deficient myocardial glucose uptake and other perturbations of metabolic profiles. Finally, ALDH2 mutations were associated with worse diastolic dysfunction in diabetic patients. Together, our results demonstrate that ALDH2 deficiency and resulting energy metabolism disturbance is a part of pathology of diastolic dysfunction of diabetic hearts, and suggest that patients with ALDH2 mutations are vulnerable to diabetic damage.

Key Message

  • ALDH2 deficiency exacerbates diastolic dysfunction in early diabetic hearts.

  • ALDH2 deficiency triggers decompensation of metabolic reserves and energy metabolism disturbances in early diabetic hearts.

  • ALDH2 deficiency potentiates oxidative stress and AMPK phosphorylation induced by diabetes via post-translational regulation of LKB1.

  • Diabetic patients with ALDH2 mutations are predisposed to worse diastolic dysfunction.


Diastolic function Diabetes Energy metabolism ALDH2 



The authors acknowledge Liming Wei (the Institute of Biomedical Science, Fudan University) for technical support. This work was supported by National Natural Science Foundation of China (81570224; 81521001).

Compliance with ethical standards

This study was carried out in accordance with the Guide for the Care and Use of Laboratory Animals, Eighth edition (2011). All procedures were approved by the Institutional Animal Care and Use Committee of Fudan University. The human polymorphism protocol was approved by Fudan University Ethics Committee and all participants provided informed consent for participation in accordance with the Declaration of Helsinki (World Medical Association and R281).

Conflict of interest

The authors declare no competing financial interests.

Supplementary material

109_2016_1449_MOESM1_ESM.pdf (135 kb)
ESM 1 (PDF 134 kb)


  1. 1.
    Dhingra R, Vasan RS (2012) Diabetes and the risk of heart failure. Heart Fail Clin 8:125–133. doi:  10.1016/j.hfc.2011.08.008 CrossRefPubMedGoogle Scholar
  2. 2.
    Goyal BR, Mehta AA (2013) Diabetic cardiomyopathy: pathophysiological mechanisms and cardiac dysfuntion. Hum Exp Toxicol 32:571–590. doi:  10.1177/0960327112450885 CrossRefPubMedGoogle Scholar
  3. 3.
    Falcao-Pires I, Hamdani N, Borbely A, Gavina C, Schalkwijk CG, van der Velden J, van Heerebeek L, Stienen GJ, Niessen HW, Leite-Moreira AF, et al. (2011) Diabetes mellitus worsens diastolic left ventricular dysfunction in aortic stenosis through altered myocardial structure and cardiomyocyte stiffness. Circulation 124:1151–1159. doi:  10.1161/CIRCULATIONAHA.111.025270 CrossRefPubMedGoogle Scholar
  4. 4.
    Kruger M, Babicz K, von Frieling-Salewsky M, WA L (2010) Insulin signaling regulates cardiac titin properties in heart development and diabetic cardiomyopathy. J Mol Cell Cardiol 48:910–916. doi:  10.1016/j.yjmcc.2010.02.012. CrossRefPubMedGoogle Scholar
  5. 5.
    Lovelock JD, Monasky MM, Jeong EM, Lardin HA, Liu H, Patel BG, Taglieri DM, Gu L, Kumar P, Pokhrel N, et al. (2012) Ranolazine improves cardiac diastolic dysfunction through modulation of myofilament calcium sensitivity. Circ Res 110:841–850. doi:  10.1161/CIRCRESAHA.111.258251 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mori J, Basu R, McLean BA, Das SK, Zhang L, Patel VB, Wagg CS, Kassiri Z, Lopaschuk GD, Oudit GY (2012) Agonist-induced hypertrophy and diastolic dysfunction are associated with selective reduction in glucose oxidation: a metabolic contribution to heart failure with normal ejection fraction. Circ Heart Fail 5:493–503. doi:  10.1161/CIRCHEARTFAILURE.112.966705 CrossRefPubMedGoogle Scholar
  7. 7.
    Fontes-Carvalho R, Ladeiras-Lopes R, Bettencourt P, Leite-Moreira A, Azevedo A (2015) Diastolic dysfunction in the diabetic continuum: association with insulin resistance, metabolic syndrome and type 2 diabetes. Cardiovasc Diabetol 14:4. doi:  10.1186/s12933-014-0168-x. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Guo Y, Yu W, Sun D, Wang J, Li C, Zhang R, Babcock SA, Li Y, Liu M, Ma M, et al. (2015) A novel protective mechanism for mitochondrial aldehyde dehydrogenase (ALDH2) in type I diabetes-induced cardiac dysfunction: role of AMPK-regulated autophagy. Biochim Biophys Acta 1852:319–331. doi:  10.1016/j.bbadis.2014.05.017 CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang Y, Babcock SA, Hu N, Maris JR, Wang H, Ren J (2012) Mitochondrial aldehyde dehydrogenase (ALDH2) protects against streptozotocin-induced diabetic cardiomyopathy: role of GSK3beta and mitochondrial function. BMC Med 10:40. doi: 10.1186/1741-7015-10-40 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Shen C, Wang C, Fan F, Yang Z, Cao Q, Liu X, Sun X, Zhao X, Wang P, Ma X, et al. (2015) Acetaldehyde dehydrogenase 2 (ALDH2) deficiency exacerbates pressure overload-induced cardiac dysfunction by inhibiting Beclin-1 dependent autophagy pathway. Biochim Biophys Acta 1852:310–318. doi:  10.1016/j.bbadis.2014.07.014 CrossRefPubMedGoogle Scholar
  11. 11.
    Tseng LT, Lin CL, Tzen KY, Chang SC, Chang MF (2013) LMBD1 protein serves as a specific adaptor for insulin receptor internalization. J Biol Chem 288:32424–32432. doi:  10.1074/jbc.M113.479527 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sun A, Cheng Y, Zhang Y, Zhang Q, Wang S, Tian S, Zou Y, Hu K, Ren J, Ge J (2014) Aldehyde dehydrogenase 2 ameliorates doxorubicin-induced myocardial dysfunction through detoxification of 4-HNE and suppression of autophagy. J Mol Cell Cardiol 71:92–104. doi:  10.1016/j.yjmcc.2014.01.002 CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang Y, Mi SL, Hu N, Doser TA, Sun A, Ge J, Ren J (2014) Mitochondrial aldehyde dehydrogenase 2 accentuates aging-induced cardiac remodeling and contractile dysfunction: role of AMPK, Sirt1, and mitochondrial function. Free Radic Biol Med 71:208–220. doi:  10.1016/j.freeradbiomed.2014.03.018 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Spindler M, Saupe KW, Tian R, Ahmed S, Matlib MA, Ingwall JS (1999) Altered creatine kinase enzyme kinetics in diabetic cardiomyopathy. A(31)P NMR magnetization transfer study of the intact beating rat heart. J Mol Cell Cardiol 31:2175–2189. doi:  10.1006/jmcc.1999.1044 CrossRefPubMedGoogle Scholar
  15. 15.
    Grahame HD (2014) AMP-activated protein kinase: a key regulator of energy balance with many roles in human disease. J Intern Med 276:543–559. doi:  10.1111/joim.12268 CrossRefGoogle Scholar
  16. 16.
    McCarty MF (2014) AMPK activation—protean potential for boosting healthspan. Age (Dordr) 36:641–663. doi:  10.1007/s11357-013-9595-y CrossRefGoogle Scholar
  17. 17.
    Gomes KM, Campos JC, Bechara LR, Queliconi B, Lima VM, Disatnik MH, Magno P, Chen CH, Brum PC, Kowaltowski AJ, et al. (2014) Aldehyde dehydrogenase 2 activation in heart failure restores mitochondrial function and improves ventricular function and remodelling. Cardiovasc Res 103:498–508. doi:  10.1093/cvr/cvu125 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rider OJ, Francis JM, Ali MK, Holloway C, Pegg T, Robson MD, Tyler D, Byrne J, Clarke K, Neubauer S (2012) Effects of catecholamine stress on diastolic function and myocardial energetics in obesity. Circulation 125:1511–1519. doi:  10.1161/CIRCULATIONAHA.111.069518 CrossRefPubMedGoogle Scholar
  19. 19.
    Neubauer S (2007) The failing heart—an engine out of fuel. N Engl J Med 356:1140–1151. doi:  10.1056/NEJMra063052 CrossRefPubMedGoogle Scholar
  20. 20.
    Neubauer S, Horn M, Cramer M, Harre K, Newell JB, Peters W, Pabst T, Ertl G, Hahn D, Ingwall JS, et al. (1997) Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 96:2190–2196. doi:  10.1161/01.CIR.96.7.2190 CrossRefPubMedGoogle Scholar
  21. 21.
    Carley AN, Taegtmeyer H, Lewandowski ED (2014) Matrix revisited: mechanisms linking energy substrate metabolism to the function of the heart. Circ Res 114:717–729.  10.1161/CIRCRESAHA.114.301863 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Shen W, Asai K, Uechi M, Mathier MA, Shannon RP, Vatner SF, Ingwall JS (1999) Progressive loss of myocardial ATP due to a loss of total purines during the development of heart failure in dogs: a compensatory role for the parallel loss of creatine. Circulation 100:2113–2118. doi:  10.1161/01.CIR.100.20.2113 CrossRefPubMedGoogle Scholar
  23. 23.
    Beer M, Seyfarth T, Sandstede J, Landschutz W, Lipke C, Kostler H, von Kienlin M, Harre K, Hahn D, Neubauer S (2002) Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)P-SLOOP magnetic resonance spectroscopy. J Am Coll Cardiol 40:1267–1274. doi:  10.1016/S0735-1097(02)02160-5 CrossRefPubMedGoogle Scholar
  24. 24.
    Perseghin G, Lattuada G, De Cobelli F, Esposito A, Canu T, Ragogna F, Maffi P, Scifo P, Secchi A, Del MA, et al. (2012) Left ventricular function and energy homeostasis in patients with type 1 diabetes with and without microvascular complications. Int J Cardiol 154:111–115. doi:  10.1016/j.ijcard.2010.09.010 CrossRefPubMedGoogle Scholar
  25. 25.
    Maslov MY, Chacko VP, Hirsch GA, Akki A, Leppo MK, Steenbergen C, Weiss RG (2010) Reduced in vivo high-energy phosphates precede adriamycin-induced cardiac dysfunction. Am J Physiol Heart Circ Physiol 299:H332–H337. doi:  10.1152/ajpheart.00727.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Isfort M, Stevens SC, Schaffer S, Jong CJ, Wold LE (2014) Metabolic dysfunction in diabetic cardiomyopathy. Heart Fail Rev 19:35–48. doi:  10.1007/s10741-013-9377-8 CrossRefPubMedGoogle Scholar
  27. 27.
    Bodiga VL, Eda SR, Bodiga S (2014) Advanced glycation end products: role in pathology of diabetic cardiomyopathy. Heart Fail Rev 19:49–63. doi:  10.1007/s10741-013-9374-y CrossRefPubMedGoogle Scholar
  28. 28.
    Sysi-Aho M, Ermolov A, Gopalacharyulu PV, Tripathi A, Seppanen-Laakso T, Maukonen J, Mattila I, Ruohonen ST, Vahatalo L, Yetukuri L, et al. (2011) Metabolic regulation in progression to autoimmune diabetes. PLoS Comput Biol 7:e1002257. doi:  10.1371/journal.pcbi.1002257 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Christoffersen C, Bollano E, Lindegaard ML, Bartels ED, Goetze JP, Andersen CB, Nielsen LB (2003) Cardiac lipid accumulation associated with diastolic dysfunction in obese mice. Endocrinology 144:3483–3490. doi:  10.1210/en.2003-0242 CrossRefPubMedGoogle Scholar
  30. 30.
    Anderson EJ, Katunga LA, Willis MS (2012) Mitochondria as a source and target of lipid peroxidation products in healthy and diseased heart. Clin Exp Pharmacol Physiol 39:179–193. doi:  10.1111/j.1440-1681.2011.05641.x CrossRefPubMedGoogle Scholar
  31. 31.
    Chapple SJ, Cheng X, Mann GE (2013) Effects of 4-hydroxynonenal on vascular endothelial and smooth muscle cell redox signaling and function in health and disease. Redox Biol 1:319–331. doi:  10.1016/j.redox.2013.04.001 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lim HY, Wang W, Wessells RJ, Ocorr K, Bodmer R (2011) Phospholipid homeostasis regulates lipid metabolism and cardiac function through SREBP signaling in drosophila. Genes Dev 25:189–200. doi:  10.1101/gad.1992411 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mourmoura E, Vial G, Laillet B, Rigaudiere JP, Hininger-Favier I, Dubouchaud H, Morio B, Demaison L (2013) Preserved endothelium-dependent dilatation of the coronary microvasculature at the early phase of diabetes mellitus despite the increased oxidative stress and depressed cardiac mechanical function ex vivo. Cardiovasc Diabetol 12:49. doi:  10.1186/1475-2840-12-49 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Cheng S, Rhee EP, Larson MG, Lewis GD, McCabe EL, Shen D, Palma MJ, Roberts LD, Dejam A, Souza AL, et al. (2012) Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation 125:2222–2231. doi:  10.1161/CIRCULATIONAHA.111.067827 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ma W, JH W, Wang Q, Lemaitre RN, Mukamal KJ, Djousse L, King IB, Song X, Biggs ML, Delaney JA, et al. (2015) Prospective association of fatty acids in the de novo lipogenesis pathway with risk of type 2 diabetes: the cardiovascular health study. Am J Clin Nutr 101:153–163. doi:  10.3945/ajcn.114.092601 CrossRefPubMedGoogle Scholar
  36. 36.
    Liu Y, Yan X, Mao G, Fang L, Zhao B, Liu Y, Tang H, Wang N (2013) Metabonomic profiling revealed an alteration in purine nucleotide metabolism associated with cardiac hypertrophy in rats treated with thiazolidinediones. J Proteome Res 12:5634–5641. doi:  10.1021/pr400587y CrossRefPubMedGoogle Scholar
  37. 37.
    Taylor DR, Alaghband-Zadeh J, Cross GF, Omar S, le Roux CW, Vincent RP (2014) Urine bile acids relate to glucose control in patients with type 2 diabetes mellitus and a body mass index below 30 kg/m2. PLoS One 9:e93540. doi:  10.1371/journal.pone.0093540 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wang G, Li W, Lu X, Zhao X (2011) Riboflavin alleviates cardiac failure in type I diabetic cardiomyopathy. Heart Int 6:e21. doi:  10.4081/hi.2011.e21 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Katsumata Y, Shinmura K, Sugiura Y, Tohyama S, Matsuhashi T, Ito H, Yan X, Ito K, Yuasa S, Ieda M, et al. (2014) Endogenous prostaglandin D2 and its metabolites protect the heart against ischemia-reperfusion injury by activating Nrf2. Hypertension 63:80–87. doi:  10.1161/HYPERTENSIONAHA.113.01639 CrossRefPubMedGoogle Scholar
  40. 40.
    Oresic M (2012) Metabolomics in the studies of islet autoimmunity and type 1 diabetes. Rev Diabet Stud 9:236–247. doi:  10.1900/RDS.2012.9.236 CrossRefPubMedGoogle Scholar
  41. 41.
    Meikle PJ, Wong G, Barlow CK, Weir JM, Greeve MA, MacIntosh GL, Almasy L, Comuzzie AG, Mahaney MC, Kowalczyk A, et al. (2013) Plasma lipid profiling shows similar associations with prediabetes and type 2 diabetes. PLoS One 8:e74341. doi:  10.1371/journal.pone.0074341 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lee CH, Hung KC, Chang SH, Lin FC, Hsieh MJ, Chen CC, Chu CM, Hsieh IC, Wen MS, Wu D (2012) Reversible left ventricular diastolic dysfunction on Doppler tissue imaging predicts a more favorable prognosis in chronic heart failure. Circ J 76:1145–1150. doi:  10.1253/circj.CJ-11-0929 CrossRefPubMedGoogle Scholar
  43. 43.
    Loffredo FS, Nikolova AP, Pancoast JR, Lee RT (2014) Heart failure with preserved ejection fraction: molecular pathways of the aging myocardium. Circ Res 115:97–107. doi:  10.1161/CIRCRESAHA.115.302929 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Li H, Borinskaya S, Yoshimura K, Kal’Ina N, Marusin A, Stepanov VA, Qin Z, Khaliq S, Lee MY, Yang Y, et al. (2009) Refined geographic distribution of the oriental ALDH2*504Lys (nee 487Lys) variant. Ann Hum Genet 73(Pt 3):335–345. doi:  10.1111/j.1469-1809.2009.00517.x CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Chen CH, Ferreira JC, Gross ER, Mochly-Rosen D (2014) Targeting aldehyde dehydrogenase 2: new therapeutic opportunities. Physiol Rev 94:1–34. doi:  10.1152/physrev.00017.2013 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Cong Wang
    • 1
  • Fan Fan
    • 1
  • Quan Cao
    • 1
  • Cheng Shen
    • 1
  • Hong Zhu
    • 1
  • Peng Wang
    • 1
  • Xiaona Zhao
    • 1
  • Xiaolei Sun
    • 2
  • Zhen Dong
    • 3
  • Xin Ma
    • 2
  • Xiangwei liu
    • 1
  • Shasha Han
    • 1
  • Chaoneng Wu
    • 1
  • Yunzeng Zou
    • 1
    • 2
  • Kai Hu
    • 1
  • Junbo Ge
    • 1
    • 2
    Email author
  • Aijun Sun
    • 1
    • 2
    Email author
  1. 1.Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiPeople’s Republic of China
  2. 2.Institute of Biomedical ScienceFudan UniversityShanghaiPeople’s Republic of China
  3. 3.Department of Cardiology, Huashan HospitalFudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations