Journal of Molecular Medicine

, Volume 94, Issue 9, pp 971–977 | Cite as

Archaeogenetics in evolutionary medicine

  • Abigail BouwmanEmail author
  • Frank Rühli


Archaeogenetics is the study of exploration of ancient DNA (aDNA) of more than 70 years old. It is an important part of the wider studies of many different areas of our past, including animal, plant and pathogen evolution and domestication events. Hereby, we address specifically the impact of research in archaeogenetics in the broader field of evolutionary medicine. Studies on ancient hominid genomes help to understand even modern health patterns. Human genetic microevolution, e.g. related to abilities of post-weaning milk consumption, and specifically genetic adaptation in disease susceptibility, e.g. towards malaria and other infectious diseases, are of the upmost importance in contributions of archeogenetics on the evolutionary understanding of human health and disease. With the increase in both the understanding of modern medical genetics and the ability to deep sequence ancient genetic information, the field of archaeogenetic evolutionary medicine is blossoming.


Evolution of health Pathogen Immunity Adaptive changes 


Compliance with ethical standards

Authorship statement

AB and FR designed the article.

AB with some help of FR wrote the article.

AB and FR finalized and approved the article.


  1. 1.
    Paabo S, Gifford JA, Wilson AC (1988) Mitochondrial DNA sequences from a 7000-year old brain. Nucleic Acids Res 16:9775–87CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cooper A, Poinar HN (2000) Ancient DNA: do it right or not at all. Science 289:1139CrossRefPubMedGoogle Scholar
  3. 3.
    Ronaghi M, Karamohamed S, Pettersson B, Uhlén M, Nyrén P (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242:84–9CrossRefPubMedGoogle Scholar
  4. 4.
    Voelkerding KV, Dames SA, Durtschi JD (2009) Next-generation sequencing: from basic research to diagnostics. Clin Chem 55:641–58CrossRefPubMedGoogle Scholar
  5. 5.
    Krings M, Stone A, Schmitz RW, Krainitzki H, Stoneking M, Pääbo S (1997) Neandertal DNA sequences and the origin of modern humans. Cell 90:19–30CrossRefPubMedGoogle Scholar
  6. 6.
    Krings M, Geisert H, Schmitz RW, Krainitzki H, Pääbo S (1999) DNA sequence of the mitochondrial hypervariable region II from the Neandertal type specimen. PNAS 96:5581–5CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Scholz M, Bachmann L, Nicholson GJ, Bachmann J, Giddings I, Rüschoff-Thale B, Czarnetzi A, Pusch CM (2000) Genomic differentiation of Neanderthals and anatomically modern man allows a fossil-DNA-based classification of morphologically indistinguishable hominid bones. Am J Hum Genet 66:1927–32CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Caramelli D, Lalueza-Fox C, Vernesi C, Lari M, Casoli A, Mallengi F, Chiarelli B, Dupanloup I, Bertranpetit J, Barbujani G et al (2003) Evidence for a genetic discontinuity between Neandertals and 24,000-year-old anatomically modern Europeans. PNAS 100:6593–7CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Currat M, Excoffier L (2004) Modern humans did not admix with Neanderthals during their range expansion into Europe. PLoS Biol 2:e421CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lalueza-Fox C, Gigli E, de la Rasilla M, Fortea J, Rosas A (2009) Bitter taste perception in Neanderthals through the analysis of the TAS2R38 gene. Biol Letters 5:809–11CrossRefGoogle Scholar
  11. 11.
    Lalueza-Fox C, Römpler H, Caramelli D, Stäubert C, Catalano G, Hughes D, Rohland N, Pilli E, Longo L, Condemi S et al (2007) A Melanocortin 1 Receptor allele suggests varying pigmentation among Neanderthals. Science 318:1453–5CrossRefPubMedGoogle Scholar
  12. 12.
    Milaneschi Y, Hoogendijk W, Lips P, Heijboer AC, Schoevers R, Van Hemert AM, Penninx BWJH (2012) The association between low vitamin D and depressive disorders. Mol Psychiatr 19:444CrossRefGoogle Scholar
  13. 13.
    Green RE, Krause J, Ptak SE, Briggs AW, Ronan MT, Simons JF, Du L, Egholm M, Rothberg JM, Paunovic M et al (2006) Analysis of one million base pairs of Neanderthal DNA. Nature 444:330–36CrossRefPubMedGoogle Scholar
  14. 14.
    Noonan JP, Coop G, Kudaravalli S, Smith D, Krause J, Alessi J, Chen F, Platt D, Pääbo S, Pritchard JK et al (2006) Sequencing and analysis of Neanderthal genomic DNA. Science 314:1113–8CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Krause J, Fu Q, Good JM, Viola B, Shunkov MV, Derevianko AP, Pääbo S (2010) The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature 464:894–7CrossRefPubMedGoogle Scholar
  16. 16.
    Meyer M, Kircher M, Gansauge M-T, Li H, Racimo F, Mallick S, Schraiber JG, Jay F, Prüfer K, de Filippo C et al (2012) A high-coverage genome sequence from an archaic Denisovan individual. Science 338:222–6CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sawyer S, Renaud G, Viola B, Hublin J-J, Gansauge M-T, Shunkov MV, Derevianko AP, Prüfer K, Kelso J, Pääbo S (2015) Nuclear and mitochondrial DNA sequences from two Denisovan individuals. PNAS 112:15696–700CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Huerta-Sanchez E, Jin X, Asan, Bianba Z, Peter BM, Vinckenbosch N, Liang Y, Yi X, He M, Somel M et al (2014) Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512:194–7CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Marchi E, Kanapin A, Byott M, Magiorkinis G, Belshaw R (2013) Neanderthal and Denisovan retroviruses in modern humans. Curr Biol 23:R994–5CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Meyer M, Fu Q, Aximu-Petri A, Glocke I, Nickel B, Arsuage J-L, Martinez I, Gracia A, Bermundez de Castro JM, Carbonell E et al (2013) A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature 505:403–6CrossRefPubMedGoogle Scholar
  21. 21.
    Meyer M, Arsuaga J-L, de Filippo C, Nagel A, Aximu-Petri A, Nickel B, Martinez I, Gracia A, Bermundez de Castro JM, Cerbonell E et al (2016) Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531:504–10CrossRefPubMedGoogle Scholar
  22. 22.
    Llorente MG, Jones ER, Eriksson A, Siska V, Arthur KW, Arthur JW, Curtis MC, Stock JT, Coltorti M, Pieruccini P et al (2015) Ancient Ethiopian genome reveals extensive Eurasian admixture throughout the African continent. Science 350:820–2CrossRefGoogle Scholar
  23. 23.
    Bersaglieri T, Sabeti PC, Patterson N, Vanderploeg T, Schaffner SF, Drake JA, Reich DE, Hirschhorn JN (2004) Genetic signatures of strong recent positive selection at the lactase gene. Am J Hum Genet 74:1111–20CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Tishkoff SA, Reed FA, Ranciaro A, Voight BF, Babbitt CC, Silverman JS, Powell K, Mortensen HM, Hirbo JB, Osman M et al (2007) Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet 39:31–40CrossRefPubMedGoogle Scholar
  25. 25.
    Burger J, Kirchner M, Bramanti B, Haak W, Thomas MG (2007) Absence of the lactase-persistence-associated allele in early Neolithic Europeans. PNAS 104:3736–41CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Allentoft ME, Sikora M, Sjogren K-G, Rasmussen S, Rasmussen M, Stenderup J, Damgaard PB, Schroeder H, Ahlström T, Vinner L et al (2015) Population genomics of Bronze Age Eurasia. Nature 522:167–72CrossRefPubMedGoogle Scholar
  27. 27.
    Krüttli A, Bouwman A, Akgül G, Della Casa P, Rühli F, Warinner C (2014) Ancient DNA analysis reveals high frequency of European lactase persistence allele (T-13910) in Medieval central Europe. PLoS ONE 9:e86251CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Haak W, Gruber P, Rühli FJ, Böni T, Ulrich-Bochsler S, Frauendorf E, Burger J, Alt KW (2005) Molecular evidence of HLA–B27 in a historical case of ankylosing spondylitis. Arthritis Rheum 52:3318–9CrossRefPubMedGoogle Scholar
  29. 29.
    Leden I, Götherström A, Drenzel L, Svensson B (2009) HLA-B27 sequences identified in a mediaeval skeleton with ankylosing spondylitis. Ann Rheum Dis 68:757–8CrossRefPubMedGoogle Scholar
  30. 30.
    Martinson JJ, Chapman NH, Rees DC, Liu Y-T, Clegg JB (1997) Global distribution of the CCR5 gene 32-basepair deletion. Nat Genet 16:100–3CrossRefPubMedGoogle Scholar
  31. 31.
    Stephens JC, Reich DE, Goldstein DB, Shin HD, Smith MW, Carrington M, Winkler C, Huttley GA, Allikmets R, Schriml L et al (1998) Dating the origin of the CCR5- Δ32 AIDS resistance allele by the coalescence of haplotypes. Am J Hum Genet 62:1507–15CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Mecsas J, Franklin G, Kuziel WA, Brubaker RR, Falkow S, Mosier DE (2004) Evolutionary genetics: CCR5 mutation and plague protection. Nature 427:606CrossRefPubMedGoogle Scholar
  33. 33.
    Hummel S, Schmidt D, Kremeyer B, Herrmann B, Oppermann M (2005) Detection of the CCR5-Delta 32 HIV resistance gene in Bronze Age skeletons. Genes Immun 6:371–4CrossRefPubMedGoogle Scholar
  34. 34.
    Sabeti PC, Walsh E, Schaffner SF, Carilly P, Hutcheson HB, Cullen M, Mikkelsen TS, Roy J, Patterson N, Cooper R et al (2005) The case for selection at CCR5-Δ32. PLoS Biol 3:e378CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Glass WG, McDermott DH, Lekhong S, Yu SF, Frank WA, Pape J, Cheshier RC, Murphy PM (2006) CCR5 deficiency increases risk of symptomatic West Nile virus infection. J Exp Med 203:35–40CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Filon D, Faerman M, Smith P, Oppenheim A (1995) Sequence analysis reveals a β-thalassaemia mutation in the DNA of skeletal remains from the archaeological site of Akhziv, Israel. Nat Genet 9:365–8CrossRefPubMedGoogle Scholar
  37. 37.
    Chilvers ER, Bouwman AS, Brown K, Arnott RG, Prag JNW, Brown TA (2008) Ancient DNA in human bones from Neolithic and Bronze Age sites in Greece and Crete. J Arch Sci 35:2707–14CrossRefGoogle Scholar
  38. 38.
    Hughey JR, Du M, Li Q, Michalodimitrakis M, Stamatoyannopoulos G (2012) A search for ß- thalassemia mutations in 4000 year old ancient DNAs of Minoan Cretans. Blood Cell Mol Dis 48:7–10CrossRefGoogle Scholar
  39. 39.
    Spigelman M, Lemma E (1993) The use of polymerase chain reaction (PCR) to detect Mycobacterium tuberculosis in ancient skeletons. Int J Osteoarchaeol 3:137–43CrossRefGoogle Scholar
  40. 40.
    Taylor GM, Murphy E, Hopkins R, Rutland P, Chistov Y (2007) First report of Mycobacterium bovis DNA in human remains from the Iron Age. Microbiol 153:12343–9CrossRefGoogle Scholar
  41. 41.
    Fletcher HA, Donoghue HD, Holton J, Pap I, Spigelman M (2003) Widespread occurrence of Mycobacterium tuberculosis DNA from 18th-19th century Hungarians. Am J Phys Anth 120:144–52CrossRefGoogle Scholar
  42. 42.
    Bouwman AS, Kennedy SL, Müller R, Stephens RH, Holst M, Caffell AC, Roberts CA, Brown TA (2012) Genotype of a historic strain of Mycobacterium tuberculosis. PNAS 109:18511–6CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Bos KI, Harkins KM, Herbig A, Coscolla M, Weber N, Comas I, Forrest SA, Bryant JM, Harris SR, Schuenemann VJ et al (2014) Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514:494–7CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Taylor GM, Watson CL, Bouwman AS, Lockwood DNJ, Mays SA (2006) Variable nucleotide tandem repeat (VNTR) typing of two palaeopathological cases of lepromatous leprosy from Mediaeval England. J Arch Sci 33:1569–79CrossRefGoogle Scholar
  45. 45.
    Schuenemann VJ, Singh P, Mendum TA, Krause-Kyora B, Jäger G, Bos KI, Herbig A, Economou C, Benjak A, Busso P et al (2013) Genome-wide comparison of medieval and modern Mycobacterium leprae. Science 341:179–83CrossRefPubMedGoogle Scholar
  46. 46.
    Taylor GM, Rutland P, Molleson T (1997) A sensitive polymerase chain reaction method for the detection of Plasmodium species DNA in ancient human remains. Anc Biomol 1:193–203Google Scholar
  47. 47.
    Sallares R, Gomzi S (2002) Biomolecular archaeology of malaria. Anc Biomol 3:195–213Google Scholar
  48. 48.
    Kolman CJ, Centurion-Lara A, Lukehart SA, Owsley DW, Turose N (1999) Identification of Treponema pallidum subspecies pallidum in a 200-year-old skeletal specimen. J Infect Dis 180:2060–3CrossRefPubMedGoogle Scholar
  49. 49.
    Bouwman AS, Brown TA (2005) The limits of biomolecular palaeopathology: ancient DNA cannot be used to study venereal syphilis. J Arch Sci 32:703–13CrossRefGoogle Scholar
  50. 50.
    Von Hunnius TE, Yang D, Eng B, Waye JS, Saunders SR (2007) Digging deeper into the limits of ancient DNA research on syphilis. J Arch Sci 34:2091–100CrossRefGoogle Scholar
  51. 51.
    Drancourt M, Aboudharam G, Signoli M, Dutour O, Raoult D (1998) Detection of 400-year-old Yesinia pestis DNA in human dental pulp: an approach to the diagnosis of ancient septicaemia. PNAS 95:12637–40CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Raoult D, Aboudharam G, Crubezy E, Larrouy G, Ludes B, Drancourt M (2000) Molecular identification by “suicide PCR” of Yersinia pestis as the agent of Medieval Black Death. PNAS 97:12800–3CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Gilbert MTP, Cuccui J, White W, Lynnerup N, Titball RW, Cooper A, Prentice MB (2004) Absence of Yersinia pestis-specific DNA in human teeth from five European excavations of putative plague victims. Microbiol-SGM 150:341–54CrossRefGoogle Scholar
  54. 54.
    Drancourt M, Roux W, Dang LV, Tran-Hung L, Castex D, Chenal-Francisque V, Ogata H, Founier PE, Crubézy E, Raoult D (2004) Genotyping, orientalis-like Yersinia pestis, and plague pandemics. Emerg Infect Dis 10:1585–92CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Drancourt M, Signoli M, Dang LV, Bizot B, Roux V, Tzortzis S, Raoult D (2007) Yersinia pestis Orientalis in remains of ancient plague patients. Emerg Infect Dis 13:332–3CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Haensch S, Bianucci R, Signoli M, Rajerison M, Schultz M, Kacki S, Vermunt M, Weston D, Hurst D, Achtman M et al (2010) Distinct clones of Yersinia pestis caused the Black Death. PLoS Pathog 6:e1001134CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Wiechmann I, Harbeck M, Grupe G (2010) Yersinia pestis DNA sequences in Late Medieval skeletal finds, Bavaria. Emerg Infect Dis 16:1806–7CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Tran T-N-T, Signoli M, Fozzati L, Aboudharam G, Raoult D, Drancourt M (2011) High Throughput, multiplexed pathogen detection authenticates Plague waves in Medieval Venice, Italy. PLoS ONE 6:e16735CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Schuenemann VJ, Bos K, DeWitte S, Schedes S, Jamieson J, Mittnik A, Forrest S, Coombes BK, Wood JW, Earn DJD et al (2011) Targeted enrichment of ancient pathogens yielding the pPCP1 plasmid of Yersinia pestis from victims of the Black Death. PNAS 108:e746–52CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Bos KI, Schuenemann VJ, Golding GB, Burbano HA, Waglechner N, Coombes BK, McPhee JB, DeWitte SN, Meyer M, Schmedes S et al (2011) A draft genome of Yersinia pestis from victims of the Black Death. Nature 478:506–10CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Cui Y, Yu C, Yan Y, Li D, Li Y, Jombart T, Weinert LA, Wang Z, Guo Z, Xu L et al (2013) Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis. PNAS 2013:577–82CrossRefGoogle Scholar
  62. 62.
    Harbeck M, Seifert L, Hänsch S, Wagner DM, Birdsell D, Parise KL, Wiechmann I, Grupe G, Thomas A, Keim P et al (2013) Yersinia pestis DNA from skeletal remains from the 6th century AD reveals insights into Justinianic Plague. PLoS Pathog 9:e1003349CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Rasmussen S, Allentoft ME, Nielsen K, Orlando L, Sikora M, Sjögren K-G, Pedersen AG, Schubert M, Van Dam A, Kapel CMO et al (2015) Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell 163:571–82CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Universitat ZurichZürichSwitzerland

Personalised recommendations