Advertisement

Journal of Molecular Medicine

, Volume 94, Issue 10, pp 1143–1151 | Cite as

A retinoic acid receptor β2 agonist reduces hepatic stellate cell activation in nonalcoholic fatty liver disease

  • Steven E. Trasino
  • Xiao-Han Tang
  • Jose Jessurun
  • Lorraine J. Gudas
Original Article

Abstract

Hepatic stellate cells (HSCs) are an important cellular target for the development of novel pharmacological therapies to prevent and treat nonalcoholic fatty liver diseases (NAFLD). Using a high fat diet (HFD) model of NAFLD, we sought to determine if synthetic selective agonists for retinoic acid receptor β2 (RARβ2) and RARγ can mitigate HSC activation and HSC relevant signaling pathways during early stages of NAFLD, before the onset of liver injury. We demonstrate that the highly selective RARβ2 agonist, AC261066, can reduce the activation of HSCs, marked by decreased HSC expression of α-smooth muscle actin (α-SMA), in mice with HFD-induced NAFLD. Livers of HFD-fed mice treated with AC261066 exhibited reduced steatosis, oxidative stress, and expression of pro-inflammatory mediators, such as tumor necrosis factor-alpha (TNFα), interleukin 1β (IL-1β), and monocyte chemotactic protein-1 (MCP-1). Kupffer cell (macrophage) expression of transforming growth factor-β1 (TGF-β1), which plays a critical role in early HSC activation, was markedly reduced in AC261066-treated, HFD-fed mice. In contrast, HFD-fed mice treated with an RARγ agonist (CD1530) showed no decreases in steatosis, HSC activation, or Kupffer cell TGF-β1 levels. In conclusion, our data demonstrate that RARβ2 is an attractive target for development of NAFLD therapies.

Key Messages

• Hepatic stellate cells (HSCs) are an important pharmacological target for the prevention of nonalcoholic fatty liver diseases (NAFLD).

• Retinoids and retinoic acid receptors (RARs) possess favorable metabolic modulating properties.

• We show that an agonist for retinoic acid receptor-β2 (RARβ2), but not RARγ, mitigates HSC activation and NAFLD.

Keywords

Retinoic acid receptor β2 Retinoic acid Stellate cells Steatosis 

Notes

Acknowledgments

We thank Daniel Stummer for editorial assistance, Viral Patel for Q-PCR and laboratory assistance, and the Gudas lab for data discussions.

Financial support

This research was supported by Weill Cornell funds and by R01CA043796 to LJG. ST was supported by NCI TG CA062948 during a portion of this research.

Compliance with ethical standards

Conflict of interest

Weill Cornell has filed a patent application on some of the intellectual property (IP) in this manuscript, and this IP was licensed to Sveikatal, Inc. LJG and XHT are founders and have financial interests in Sveikatal, Inc.

Author contributions

S.E.T. performed experiments, analyzed data, wrote the manuscript, reviewed/edited manuscript. X.H.T. performed experiments, wrote the manuscript, and reviewed/edited the manuscript. J.J. researched data and reviewed/edited manuscript. L.J.G. performed experiments, wrote the manuscript, and reviewed/edited manuscript. Dr. Lorraine Gudas is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analyses.

Supplementary material

109_2016_1434_MOESM1_ESM.pdf (390 kb)
ESM 1 (PDF 389 kb)

REFERENCES

  1. 1.
    Farrell GC, Larter CZ (2006) Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 43:S99–S112CrossRefPubMedGoogle Scholar
  2. 2.
    Lazo M, Clark JM (2008) The epidemiology of nonalcoholic fatty liver disease: a global perspective. Semin Liver Dis 28:339–350CrossRefPubMedGoogle Scholar
  3. 3.
    Hassan K, Bhalla V, El Regal ME, A-Kader HH (2014) Nonalcoholic fatty liver disease: a comprehensive review of a growing epidemic. World J Gastroenterol 20:12082–12101CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X, Dapito DH, Pradere JP, Schwabe RF (2013) Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun 4:2823CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Friedman SL (2008) Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88:125–172CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Friedman SL (2015) Hepatic fibrosis: emerging therapies. Dig Dis 33:504–507CrossRefPubMedGoogle Scholar
  7. 7.
    Asahina K, Tsai SY, Li P, Ishii M, Maxson RE, Sucov HM, Tsukamoto H (2009) Mesenchymal origin of hepatic stellate cells, submesothelial cells, and perivascular mesenchymal cells during mouse liver development. Hepatology 49:998–1011CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Friedman SL (2008) Mechanisms of hepatic fibrogenesis. Gastroenterology 134:1655–1669CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Washington K, Wright K, Shyr Y, Hunter EB, Olson S, Raiford DS (2000) Hepatic stellate cell activation in nonalcoholic steatohepatitis and fatty liver. Hum Pathol 31:822–828CrossRefPubMedGoogle Scholar
  10. 10.
    Feldstein AE, Papouchado BG, Angulo P, Sanderson S, Adams L, Gores GJ (2005) Hepatic stellate cells and fibrosis progression in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 3:384–389CrossRefPubMedGoogle Scholar
  11. 11.
    Tilg H, Moschen AR (2010) Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52:1836–1846CrossRefPubMedGoogle Scholar
  12. 12.
    Wobser H, Dorn C, Weiss TS, Amann T, Bollheimer C, Büttner R, Schölmerich J, Hellerbrand C (2009) Lipid accumulation in hepatocytes induces fibrogenic activation of hepatic stellate cells. Cell Res 19:996–1005CrossRefPubMedGoogle Scholar
  13. 13.
    MacDonald GA, Bridle KR, Ward PJ, Walker NI, Houglum K, George DK, Smith JL, Powell LW, Crawford DH, Ramm GA (2001) Lipid peroxidation in hepatic steatosis in humans is associated with hepatic fibrosis and occurs predominately in acinar zone 3. J Gastroenterol Hepatol 16:599–606CrossRefPubMedGoogle Scholar
  14. 14.
    Brun PJ, Yang KJ, Lee SA, Yuen JJ, Blaner WS (2013) Retinoids: potent regulators of metabolism. Biofactors 39:151–163CrossRefPubMedGoogle Scholar
  15. 15.
    Kim SC, Kim CK, Axe D, Cook A, Lee M, Li T, Smallwood N, Chiang JY, Hardwick JP, Moore DD et al (2014) All-trans-retinoic acid ameliorates hepatic steatosis in mice by a novel transcriptional cascade. Hepatology 59:1750–1760CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Trasino SE, Benoit YD, Gudas LJ (2015) Vitamin a deficiency causes hyperglycemia and loss of pancreatic β-cell mass. J Biol Chem 290:1456–1473CrossRefPubMedGoogle Scholar
  17. 17.
    Trasino SE, Tang XH, Jessurun J, Gudas LJ (2015) Obesity leads to tissue, but not serum vitamin a deficiency. Sci Rep 5:15893CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Pérez RJ, Benoit YD, Gudas LJ (2013) Deletion of retinoic acid receptor β (RARβ) impairs pancreatic endocrine differentiation. Exp Cell Res 319:2196–2204CrossRefPubMedGoogle Scholar
  19. 19.
    Davis BH, Kramer RT, Davidson NO (1990) Retinoic acid modulates rat Ito cell proliferation, collagen, and transforming growth factor beta production. J Clin Invest 86:2062–2070CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hellemans K, Grinko I, Rombouts K, Schuppan D, Geerts A (1999) All-trans and 9-cis retinoic acid alter rat hepatic stellate cell phenotype differentially. Gut 45:134–142CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lund BW, Piu F, Gauthier NK, Eeg A, Currier E, Sherbukhin V, Brann MR, Hacksell U, Olsson R (2005) Discovery of a potent, orally available, and isoform-selective retinoic acid beta2 receptor agonist. J Med Chem 48:7517–7519CrossRefPubMedGoogle Scholar
  22. 22.
    Shimono K, Tung WE, Macolino C, Chi AH, Didizian JH, Mundy C, Chandraratna RA, Mishina Y, Enomoto-Iwamoto M, Pacifici M et al (2011) Potent inhibition of heterotopic ossification by nuclear retinoic acid receptor-γ agonists. Nat Med 17:454–460CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR (1999) Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 94:2467–2474CrossRefPubMedGoogle Scholar
  24. 24.
    Koopman R, Schaart G, Hesselink MK (2001) Optimisation of oil red O staining permits combination with immunofluorescence and automated quantification of lipids. Histochem Cell Biol 116:63–68PubMedGoogle Scholar
  25. 25.
    Laursen KB, Mongan NP, Zhuang Y, Ng MM, Benoit YD, Gudas LJ (2013) Polycomb recruitment attenuates retinoic acid-induced transcription of the bivalent NR2F1 gene. Nucleic Acids Res 41:6430–6443CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ito M, Suzuki J, Tsujioka S, Sasaki M, Gomori A, Shirakura T, Hirose H, Ishihara A, Iwaasa H, Kanatani A (2007) Longitudinal analysis of murine steatohepatitis model induced by chronic exposure to high-fat diet. Hepatol Res 37:50–57CrossRefPubMedGoogle Scholar
  27. 27.
    Takahashi Y, Soejima Y, Fukusato T (2012) Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 18:2300–2308CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yeh MM, Brunt EM (2014) Pathological features of fatty liver disease. Gastroenterology 147:754–764CrossRefPubMedGoogle Scholar
  29. 29.
    George J, Pera N, Phung N, Leclercq I, Yun Hou J, Farrell G (2003) Lipid peroxidation, stellate cell activation and hepatic fibrogenesis in a rat model of chronic steatohepatitis. J Hepatol 39:756–764CrossRefPubMedGoogle Scholar
  30. 30.
    Chalasani N, Deeg MA, Crabb DW (2004) Systemic levels of lipid peroxidation and its metabolic and dietary correlates in patients with nonalcoholic steatohepatitis. Am J Gastroenterol 99:1497–1502CrossRefPubMedGoogle Scholar
  31. 31.
    Nieto N (2006) Oxidative-stress and IL-6 mediate the fibrogenic effects of Kupffer cells on stellate cells. Hepatology 44:1487–1501CrossRefPubMedGoogle Scholar
  32. 32.
    Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128CrossRefPubMedGoogle Scholar
  33. 33.
    Matsuzawa N, Takamura T, Kurita S, Misu H, Ota T, Ando H, Yokoyama M, Honda M, Zen Y, Nakanuma Y et al (2007) Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology 46:1392–1403CrossRefPubMedGoogle Scholar
  34. 34.
    Hebbard L, George J (2011) Animal models of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 8:35–44CrossRefPubMedGoogle Scholar
  35. 35.
    Cortez-Pinto H, Baptista A, Camilo ME, de Moura MC (2001) Hepatic stellate cell activation occurs in nonalcoholic steatohepatitis. Hepatogastroenterology 48:87–90PubMedGoogle Scholar
  36. 36.
    Hellerbrand C, Stefanovic B, Giordano F, Burchardt ER, Brenner DA (1999) The role of TGFbeta1 in initiating hepatic stellate cell activation in vivo. J Hepatol 30:77–87CrossRefPubMedGoogle Scholar
  37. 37.
    Dooley S, ten Dijke P (2012) TGF-β in progression of liver disease. Cell Tissue Res 347:245–256CrossRefPubMedGoogle Scholar
  38. 38.
    Hautmann MB, Madsen CS, Owens GK (1997) A transforming growth factor beta (TGFbeta) control element drives TGFbeta-induced stimulation of smooth muscle alpha-actin gene expression in concert with two CArG elements. J Biol Chem 272:10948–10956CrossRefPubMedGoogle Scholar
  39. 39.
    Austyn JM, Gordon S (1981) F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur J Immunol 11:805–815CrossRefPubMedGoogle Scholar
  40. 40.
    Kisseleva T, Brenner DA (2011) Anti-fibrogenic strategies and the regression of fibrosis. Best Pract Res Clin Gastroenterol 25:305–317CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Trasino SE, Tang XH, Jessurun J, Gudas LJ (2016) Retinoic acid receptor β2 agonists restore glycaemic control in diabetes and reduce steatosis. Diabetes Obes Metab 18:142–151CrossRefPubMedGoogle Scholar
  42. 42.
    Tang XH, Osei-Sarfo K, Urvalek AM, Zhang T, Scognamiglio T, Gudas LJ (2014) Combination of bexarotene and the retinoid CD1530 reduces murine oral-cavity carcinogenesis induced by the carcinogen 4-nitroquinoline 1-oxide. Proc Natl Acad Sci U S A 111:8907–8912CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Gudas LJ (2012) (2012) Emerging roles for retinoids in regeneration and differentiation in normal and disease states. Biochim Biophys Acta 1821:213–221CrossRefPubMedGoogle Scholar
  44. 44.
    Thatcher JE, Isoherranen N (2009) The role of CYP26 enzymes in retinoic acid clearance. Expert Opin Drug Metab Toxicol 5:875–886CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Gillespie RF, Gudas LJ (2007) Retinoid regulated association of transcriptional co-regulators and the polycomb group protein SUZ12 with the retinoic acid response elements of Hoxa1, RARbeta(2), and Cyp26A1 in F9 embryonal carcinoma cells. J Mol Biol 372:298–316CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sucov HM, Murakami KK, Evans RM (1990) Characterization of an autoregulated response element in the mouse retinoic acid receptor type beta gene. Proc Natl Acad Sci U S A 87:5392–5396CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Wree A, Broderick L, Canbay A, Hoffman HM, Feldstein AE (2013) From NAFLD to NASH to cirrhosis-new insights into disease mechanisms. Nat Rev Gastroenterol Hepatol 10:627–636CrossRefPubMedGoogle Scholar
  48. 48.
    D'Ambrosio DN, Walewski JL, Clugston RD, Berk PD, Rippe RA, Blaner WS (2011) Distinct populations of hepatic stellate cells in the mouse liver have different capacities for retinoid and lipid storage. PLoS One 6, e24993. doi: 10.1371/journal.pone.0024993 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Hotamisligil GS, Erbay E (2008) Nutrient sensing and inflammation in metabolic diseases. Nat Rev Immunol 8:923–934CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Tosello-Trampont AC, Landes SG, Nguyen V, Novobrantseva TI, Hahn YS (2012) Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-α production. J Biol Chem 287:40161–40172CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Miura K, Yang L, van Rooijen N, Ohnishi H, Seki E (2012) Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am J Physiol Gastrointest Liver Physiol 302:G1310–G1321CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Cusi K (2012) Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology 142:711CrossRefPubMedGoogle Scholar
  53. 53.
    Raverdeau M, Mills KH (2014) Modulation of T cell and innate immune responses by retinoic acid. J Immunol 192:2953–2958CrossRefPubMedGoogle Scholar
  54. 54.
    Meli R, Mattace Raso G, Calignano A (2014) Role of innate immune response in non-alcoholic Fatty liver disease: metabolic complications and therapeutic tools. Front Immunol 5:177CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ulven SM, Natarajan V, Holven KB, Løvdal T, Berg T, Blomhoff R (1998) Expression of retinoic acid receptor and retinoid X receptor subtypes in rat liver cells: implications for retinoid signalling in parenchymal, endothelial, Kupffer and stellate cells. Eur J Cell Biol 77:111–116CrossRefPubMedGoogle Scholar
  56. 56.
    Ohata M, Yamauchi M, Takeda K, Toda G, Kamimura S, Motomura K, Xiong S, Tsukamoto H (2000) RAR and RXR expression by Kupffer cells. Exp Mol Pathol 68:13–20CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Steven E. Trasino
    • 1
  • Xiao-Han Tang
    • 1
  • Jose Jessurun
    • 2
  • Lorraine J. Gudas
    • 1
  1. 1.Department of PharmacologyWeill Cornell Medical College of Cornell UniversityNew YorkUSA
  2. 2.Department of PathologyWeill Cornell Medical College of Cornell UniversityNew YorkUSA

Personalised recommendations