Journal of Molecular Medicine

, Volume 94, Issue 8, pp 875–885

Identifying microRNAs targeting Wnt/β-catenin pathway in end-stage idiopathic pulmonary arterial hypertension

  • Danchen Wu
  • C. Conover TalbotJr.
  • Qun Liu
  • Zhi-Cheng Jing
  • Rachel L. Damico
  • Rubin Tuder
  • Kathleen C. Barnes
  • Paul M. Hassoun
  • Li Gao
Original Article

Abstract

MicroRNAs (miRNAs) play important roles in the pathogenesis of pulmonary arterial hypertension (PAH). However, the pathways targeted by miRNAs in PAH have not been systematically investigated. We aim to identify dysregulated miRNAs for patients with idiopathic PAH (IPAH). miRNA profiling was performed on lung tissue total RNA from eight IPAH patients and eight control subjects. Real-time quantitative RT-PCR (qRT-PCR) was used for validation of miRNA and mRNA expression levels in 14 IPAH patients and 14 control subjects. Pathway enrichment analysis showed that Wnt/β-catenin signaling is among the top PAH-related pathways enriched in target genes of dysregulated miRNAs. We confirmed the significant increased expression levels of five miRNAs (let-7a-5p, miR-26b-5p, miR-27b-3p, miR-199a-3p and miR-656) targeting major PAH-related pathways. Moreover, qRT-PCR validation of Wnt/β-catenin pathway activation indicated multiple genes including receptors (FZD4, FZD5), core molecule (CTNNB1), and downstream targets (CCND1, VEGFA, and AXIN2) were significantly upregulated. The expression level of miR-199b-5p was positively correlated with patients’ hemodynamics (PVR: r = 0.522, p = 0.038) and pulmonary vascular remodeling (muscularization: r = 0.540, p = 0.021). We confirmed overexpression of miR-199b-5p in hypoxic pulmonary arterial endothelial cells that negatively regulates GSK3B expression. In summary, miRNAs influence the pathogenesis of PAH by regulating major PAH-related pathways including Wnt/β-catenin in end-stage IPAH.

Key message

  • It is the first miRNA profiling study in lung tissue from end-stage idiopathic PAH.

  • We identified dysregulated miRNAs and major pathways (e.g., Wnt signaling) in IPAH.

  • Levels of miRNA expression were correlated with hemodynamics and pathological changes.

  • We observed aberrant expression of target genes in the Wnt/β-catenin pathway.

  • miRNAs influence the pathogenesis of PAH by regulating major PAH-related pathways.

Keywords

MicroRNA Wnt/β-catenin Idiopathic pulmonary arterial hypertension Microarray 

Supplementary material

109_2016_1426_MOESM1_ESM.pdf (1.5 mb)
ESM 1(PDF 1558 kb)

References

  1. 1.
    Rubin LJ (1997) Primary pulmonary hypertension. N Engl J Med 336(2):111–117CrossRefPubMedGoogle Scholar
  2. 2.
    Pietra GG, Capron F, Stewart S, Leone O, Humbert M, Robbins IM, Reid LM, Tuder RM (2004) Pathologic assessment of vasculopathies in pulmonary hypertension. J Am Coll Cardiol 43(12 Suppl S):25S–32SCrossRefPubMedGoogle Scholar
  3. 3.
    Tuder RM, Marecki JC, Richter A, Fijalkowska I, Flores S (2007) Pathology of pulmonary hypertension. Clin Chest Med 28(1):23–42, viiCrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Stacher E, Graham BB, Hunt JM, Gandjeva A, Groshong SD, McLaughlin VV, Jessup M, Grizzle WE, Aldred MA, Cool CD et al (2012) Modern age pathology of pulmonary arterial hypertension. Am J Respir Crit Care Med 186(3):261–272CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lee SD, Shroyer KR, Markham NE, Cool CD, Voelkel NF, Tuder RM (1998) Monoclonal endothelial cell proliferation is present in primary but not secondary pulmonary hypertension. J Clin Invest 101(5):927–934CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Masri FA, Xu W, Comhair SA, Asosingh K, Koo M, Vasanji A, Drazba J, Anand-Apte B, Erzurum SC (2007) Hyperproliferative apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 293(3):L548–L554CrossRefPubMedGoogle Scholar
  7. 7.
    Cottrill KA, Chan SY (2013) Metabolic dysfunction in pulmonary hypertension: the expanding relevance of the Warburg effect. Eur J Clin Investig 43(8):855–865CrossRefGoogle Scholar
  8. 8.
    Tuder RM, Voelkel NF (2002) Angiogenesis and pulmonary hypertension: a unique process in a unique disease. Antioxid Redox Signal 4(5):833–843CrossRefPubMedGoogle Scholar
  9. 9.
    West JD, Austin ED, Gaskill C, Marriott S, Baskir R, Bilousova G, Jean JC, Hemnes AR, Menon S, Bloodworth NC et al (2014) Identification of a common Wnt-associated genetic signature across multiple cell types in pulmonary arterial hypertension. Am J Physiol Cell Physiol 307(5):C415–C430CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Laumanns IP, Fink L, Wilhelm J, Wolff JC, Mitnacht-Kraus R, Graef-Hoechst S, Stein MM, Bohle RM, Klepetko W, Hoda MA et al (2009) The noncanonical WNT pathway is operative in idiopathic pulmonary arterial hypertension. Am J Respir Cell Mol Biol 40(6):683–691CrossRefPubMedGoogle Scholar
  11. 11.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297CrossRefPubMedGoogle Scholar
  12. 12.
    Rhodes CJ, Wharton J, Boon RA, Roexe T, Tsang H, Wojciak-Stothard B, Chakrabarti A, Howard LS, Gibbs JS, Lawrie A et al (2013) Reduced microRNA-150 is associated with poor survival in pulmonary arterial hypertension. Am J Respir Crit Care Med 187(3):294–302CrossRefPubMedGoogle Scholar
  13. 13.
    Courboulin A, Paulin R, Giguere NJ, Saksouk N, Perreault T, Meloche J, Paquet ER, Biardel S, Provencher S, Cote J et al (2011) Role for miR-204 in human pulmonary arterial hypertension. J Exp Med 208(3):535–548CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Galie N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, Beghetti M, Corris P, Gaine S, Gibbs JS et al (2009) Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J 30(20):2493–2537CrossRefPubMedGoogle Scholar
  15. 15.
    Hoeper MM, Bogaard HJ, Condliffe R, Frantz R, Khanna D, Kurzyna M, Langleben D, Manes A, Satoh T, Torres F et al (2013) Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol 62(25 Suppl):D42–D50CrossRefPubMedGoogle Scholar
  16. 16.
    Cohen ED, Tian Y, Morrisey EE (2008) Wnt signaling: an essential regulator of cardiovascular differentiation, morphogenesis and progenitor self-renewal. Development 135(5):789–798CrossRefPubMedGoogle Scholar
  17. 17.
    Anastas JN, Moon RT (2013) WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 13(1):11–26CrossRefPubMedGoogle Scholar
  18. 18.
    Howard LS (2011) Prognostic factors in pulmonary arterial hypertension: assessing the course of the disease. Eur Respir Rev 20(122):236–242CrossRefPubMedGoogle Scholar
  19. 19.
    He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531CrossRefPubMedGoogle Scholar
  20. 20.
    Chen T, Zhou G, Zhou Q, Tang H, Ibe JC, Cheng H, Gou D, Chen J, Yuan JX, Raj JU (2015) Loss of microRNA-17 approximately 92 in smooth muscle cells attenuates experimental pulmonary hypertension via induction of PDZ and LIM domain 5. Am J Respir Crit Care Med 191(6):678–692CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Parikh VN, Jin RC, Rabello S, Gulbahce N, White K, Hale A, Cottrill KA, Shaik RS, Waxman AB, Zhang YY et al (2012) MicroRNA-21 integrates pathogenic signaling to control pulmonary hypertension: results of a network bioinformatics approach. Circulation 125(12):1520–1532CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yang S, Banerjee S, Freitas A, Cui H, Xie N, Abraham E, Liu G (2012) miR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol 302(6):L521–L529CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sarkar J, Gou D, Turaka P, Viktorova E, Ramchandran R, Raj JU (2010) MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration. Am J Physiol Lung Cell Mol Physiol 299(6):L861–L871CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bertero T, Cottrill K, Krauszman A, Lu Y, Annis S, Hale A, Bhat B, Waxman AB, Chau BN, Kuebler WM et al (2015) The microRNA-130/301 family controls vasoconstriction in pulmonary hypertension. J Biol Chem 290(4):2069–2085CrossRefPubMedGoogle Scholar
  25. 25.
    Bertero T, Lu Y, Annis S, Hale A, Bhat B, Saggar R, Saggar R, Wallace WD, Ross DJ, Vargas SO et al (2014) Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension. J Clin Invest 124(8):3514–3528CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Davis-Dusenbery BN, Chan MC, Reno KE, Weisman AS, Layne MD, Lagna G, Hata A (2011) Down-regulation of Kruppel-like factor-4 (KLF4) by microRNA-143/145 is critical for modulation of vascular smooth muscle cell phenotype by transforming growth factor-beta and bone morphogenetic protein 4. J Biol Chem 286(32):28097–28110CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Caruso P, Dempsie Y, Stevens HC, McDonald RA, Long L, Lu R, White K, Mair KM, McClure JD, Southwood M et al (2012) A role for miR-145 in pulmonary arterial hypertension: evidence from mouse models and patient samples. Circ Res 111(3):290–300CrossRefPubMedGoogle Scholar
  28. 28.
    Bockmeyer CL, Maegel L, Janciauskiene S, Rische J, Lehmann U, Maus UA, Nickel N, Haverich A, Hoeper MM, Golpon HA et al (2012) Plexiform vasculopathy of severe pulmonary arterial hypertension and microRNA expression. J Heart Lung Transplant 31(7):764–772CrossRefPubMedGoogle Scholar
  29. 29.
    Meloche J, Pflieger A, Vaillancourt M, Paulin R, Potus F, Zervopoulos S, Graydon C, Courboulin A, Breuils-Bonnet S, Tremblay E et al (2014) Role for DNA damage signaling in pulmonary arterial hypertension. Circulation 129(7):786–797CrossRefPubMedGoogle Scholar
  30. 30.
    Kim J, Kang Y, Kojima Y, Lighthouse JK, Hu X, Aldred MA, McLean DL, Park H, Comhair SA, Greif DM et al (2013) An endothelial apelin-FGF link mediated by miR-424 and miR-503 is disrupted in pulmonary arterial hypertension. Nat Med 19(1):74–82CrossRefPubMedGoogle Scholar
  31. 31.
    Kim J, Hwangbo C, Hu X, Kang Y, Papangeli I, Mehrotra D, Park H, Ju H, McLean DL, Comhair SA et al (2015) Restoration of impaired endothelial myocyte enhancer factor 2 function rescues pulmonary arterial hypertension. Circulation 131(2):190–199CrossRefPubMedGoogle Scholar
  32. 32.
    Shi L, Kojonazarov B, Elgheznawy A, Popp R, Dahal BK, Bohm M, Pullamsetti SS, Ghofrani HA, Godecke A, Jungmann A et al (2016) miR-223-IGF-IR signalling in hypoxia- and load-induced right-ventricular failure: a novel therapeutic approach. Cardiovasc Res. doi:10.1093/cvr/cvw065 Google Scholar
  33. 33.
    Meloche J, Le Guen M, Potus F, Vinck J, Ranchoux B, Johnson I, Antigny F, Tremblay E, Breuils-Bonnet S, Perros F et al (2015) miR-223 reverses experimental pulmonary arterial hypertension. Am J Physiol Cell Physiol 309(6):C363–C372CrossRefPubMedGoogle Scholar
  34. 34.
    MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17(1):9–26CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Goodwin AM, D’Amore PA (2002) Wnt signaling in the vasculature. Angiogenesis 5(1–2):1–9CrossRefPubMedGoogle Scholar
  36. 36.
    Fantozzi I, Huang W, Zhang J, Zhang S, Platoshyn O, Remillard CV, Thistlethwaite PA, Yuan JX (2005) Divergent effects of BMP-2 on gene expression in pulmonary artery smooth muscle cells from normal subjects and patients with idiopathic pulmonary arterial hypertension. Exp Lung Res 31(8):783–806CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Rai PR, Cool CD, King JA, Stevens T, Burns N, Winn RA, Kasper M, Voelkel NF (2008) The cancer paradigm of severe pulmonary arterial hypertension. Am J Respir Crit Care Med 178(6):558–564CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Chen Z, Lai TC, Jan YH, Lin FM, Wang WC, Xiao H, Wang YT, Sun W, Cui X, Li YS et al (2013) Hypoxia-responsive miRNAs target argonaute 1 to promote angiogenesis. J Clin Invest 123(3):1057–1067CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Caruso P, MacLean MR, Khanin R, McClure J, Soon E, Southgate M, MacDonald RA, Greig JA, Robertson KE, Masson R et al (2010) Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline. Arterioscler Thromb Vasc Biol 30(4):716–723CrossRefPubMedGoogle Scholar
  40. 40.
    Schlosser K, White RJ, Stewart DJ (2013) miR-26a linked to pulmonary hypertension by global assessment of circulating extracellular microRNAs. Am J Respir Crit Care Med 188(12):1472–1475CrossRefPubMedGoogle Scholar
  41. 41.
    Kang BY, Park KK, Green DE, Bijli KM, Searles CD, Sutliff RL, Hart CM (2013) Hypoxia mediates mutual repression between microRNA-27a and PPARgamma in the pulmonary vasculature. PLoS One 8(11), e79503. doi:10.1371/journal.pone.0079503 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Reddy S, Zhao M, Hu DQ, Fajardo G, Hu S, Ghosh Z, Rajagopalan V, Wu JC, Bernstein D (2012) Dynamic microRNA expression during the transition from right ventricular hypertrophy to failure. Physiol Genomics 44(10):562–575CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ball MK, Waypa GB, Mungai PT, Nielsen JM, Czech L, Dudley VJ, Beussink L, Dettman RW, Berkelhamer SK, Steinhorn RH et al (2014) Regulation of hypoxia-induced pulmonary hypertension by vascular smooth muscle hypoxia-inducible factor-1alpha. Am J Respir Crit Care Med 189(3):314–324CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Rajkumar R, Konishi K, Richards TJ, Ishizawar DC, Wiechert AC, Kaminski N, Ahmad F (2010) Genomewide RNA expression profiling in lung identifies distinct signatures in idiopathic pulmonary arterial hypertension and secondary pulmonary hypertension. Am J Physiol Heart Circ Physiol 298(4):H1235–H1248CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Brock M, Haider TJ, Vogel J, Gassmann M, Speich R, Trenkmann M, Ulrich S, Kohler M, Huber LC (2015) The hypoxia-induced microRNA-130a controls pulmonary smooth muscle cell proliferation by directly targeting CDKN1A. Int J Biochem Cell Biol 61:129–137CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Danchen Wu
    • 1
    • 2
  • C. Conover TalbotJr.
    • 3
  • Qun Liu
    • 2
  • Zhi-Cheng Jing
    • 1
    • 4
  • Rachel L. Damico
    • 5
  • Rubin Tuder
    • 6
  • Kathleen C. Barnes
    • 2
  • Paul M. Hassoun
    • 5
  • Li Gao
    • 2
    • 7
  1. 1.Department of Cardiopulmonary Circulation, Shanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
  2. 2.Division of Allergy and Clinical ImmunologyThe Johns Hopkins University School of MedicineBaltimoreUSA
  3. 3.JHMI Deep Sequencing and Microarray CoreThe Johns Hopkins University School of MedicineBaltimoreUSA
  4. 4.State Key Laboratory of Cardiovascular Disease, Fu Wai HospitalPeking Union Medical College and Chinese Academy of Medical ScienceBeijingChina
  5. 5.Division of Pulmonary and Critical Care MedicineThe Johns Hopkins University School of MedicineBaltimoreUSA
  6. 6.Division of Pulmonary and Critical Care MedicineUniversity of Colorado Health Sciences CenterDenverUSA
  7. 7.The Johns Hopkins Asthma & Allergy CenterBaltimoreUSA

Personalised recommendations