Journal of Molecular Medicine

, Volume 94, Issue 9, pp 1039–1051 | Cite as

Marijuana-derived Δ-9-tetrahydrocannabinol suppresses Th1/Th17 cell-mediated delayed-type hypersensitivity through microRNA regulation

  • Jessica M. Sido
  • Austin R. Jackson
  • Prakash S. Nagarkatti
  • Mitzi NagarkattiEmail author
Original Article


9-Tetrahydrocannabinol (THC) is one of the major bioactive cannabinoids derived from the Cannabis sativa plant and is known for its anti-inflammatory properties. Delayed-type hypersensitivity (DTH) is driven by proinflammatory T helper cells including the classic inflammatory Th1 lineage as well as the more recently discovered Th17 lineage. In the current study, we investigated whether THC can alter the induction of Th1/Th17 cells involved in mBSA-induced DTH response. THC treatment (20 mg/kg) of C57BL/6 mice with DTH caused decreased swelling and infiltration of immune cells at the site of antigen rechallenge. Additionally, THC treatment decreased lymphocyte activation as well as Th1/Th17 lineage commitment, including reduced lineage-specific transcription factors and cytokines. Interestingly, while DTH caused an overexpression of miR-21, which increases Th17 differentiation via SMAD7 inhibition, and downregulation of miR-29b, an IFN-γ inhibitor, THC treatment reversed this microRNA (miR) dysregulation. Furthermore, when we transfected primary cells from DTH mice with miR-21 inhibitor or miR-29b mimic, as seen with THC treatment, the expression of target gene message was directly impacted increasing SMAD7 and decreasing IFN-γ expression, respectively. In summary, the current study suggests that THC treatment during DTH response can simultaneously inhibit Th1/Th17 activation via regulation of microRNA (miRNA) expression.

Key messages

• THC treatment inhibits simultaneous Th1/Th17 driven inflammation.

• THC treatment corrects DTH-mediated microRNA dysregulation.

• THC treatment regulates proinflammatory cytokines and transcription factors.


Hypersensitivity microRNA Cannabinoid THC Inflammation Th1/Th17 regulation 



We wish to acknowledge the University of South Carolina School of Medicine Instrumentation Resource Facility (IRF) for their assistance with histology processing. This work was supported in part by the National Institute of Health Grants R01 MH094755, P01 AT003961 and P20 GM103641 to PN, R01 ES019313 to PN and MN, and R01 AT006888 and the Veterans Administration Merit Award BX001357 to MN.

Compliance with ethical standards

All experiments were conducted under an approved Institutional Animal Care and Use Committee animal protocol. This model of footpad induced DTH is well established and approved by IACUC (protocol# 2214-100895-090814: Mouse Models of Innate Immunity 1031 of the series Methods in Molecular Biology 101-107). The manuscript does not contain clinical studies or patient data.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

109_2016_1404_MOESM1_ESM.pdf (293 kb)
Supplementary Fig. 1 THC treatment reduces activated lymphocyte proportions. DTH-induced mice were treated with THC or vehicle (n = 5 per experimental group) and the PopLN assessed for the early activation marker CD69. (a & b) Flow cytometry dot plots (gated on live cells) showing (a) CD3 + CD69+ and (b) CD19 + CD69+ cells. Cells from the draining LN were cultured in the presence of PMA, Inomycin, and Golgi Plug (4 hours) and stained for IL-17a secreting cells. (c) Flow cytometry dot plots (gated on CD4) showing CD4 + IL-17a+. Representative data from replicate experiments. (PDF 292 kb)


  1. 1.
    Leung S, Liu X, Fang L, Chen X, Guo T, Zhang J (2010) The cytokine milieu in the interplay of pathogenic Th1/Th17 cells and regulatory T cells in autoimmune disease. Cellu Molec Immunol 7(3):182–189CrossRefGoogle Scholar
  2. 2.
    Noble A, Staynov DZ, Kemeny DM (1993) Generation of rat Th2-like cells in vitro is interleukin-4-dependent and inhibited by interferon-gamma. Immunology 79(4):562–567PubMedPubMedCentralGoogle Scholar
  3. 3.
    Fishman MA, Perelson AS (1994) Th1/Th2 cross regulation. J Theor Biol 170(1):25–56CrossRefPubMedGoogle Scholar
  4. 4.
    Crane IJ, Forrester JV (2005) Th1 and Th2 lymphocytes in autoimmune disease. Crit Rev Immunol 25(2):75–102CrossRefPubMedGoogle Scholar
  5. 5.
    Luger D, Silver PB, Tang J, Cua D, Chen Z, Iwakura Y, Bowman EP, Sgambellone NM, Chan CC, Caspi RR (2008) Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J Experiment Med 205(4):799–810CrossRefGoogle Scholar
  6. 6.
    Haak S, Croxford AL, Kreymborg K, Heppner FL, Pouly S, Becher B, Waisman A (2009) IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J Clin Invest 119(1):61–69PubMedGoogle Scholar
  7. 7.
    Lee YK, Turner H, Maynard CL, Oliver JR, Chen D, Elson CO, Weaver CT (2009) Late developmental plasticity in the T helper 17 lineage. Immunity 30(1):92–107CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cosmi L, Maggi L, Santarlasci V, Liotta F, Annunziato F (2014) T helper cells plasticity in inflammation. Cytometry Part A : J Int Soc Anal Cytol 85(1):36–42CrossRefGoogle Scholar
  9. 9.
    Zhou VW, Goren A, Bernstein BE (2011) Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 12(1):7–18CrossRefPubMedGoogle Scholar
  10. 10.
    Yang X, Hegde VL, Rao R, Zhang J, Nagarkatti PS, Nagarkatti M (2014) Histone modifications are associated with delta(9)-tetrahydrocannabinol-mediated alterations in antigen-specific T cell responses. J Biol Chem. doi: 10.1074/jbc.M113.545210 Google Scholar
  11. 11.
    Rao R, Rieder SA, Nagarkatti P, Nagarkatti M (2014) Staphylococcal enterotoxin B-induced microRNA-155 targets SOCS1 to promote acute inflammatory lung injury. Infect Immun 82(7):2971–2979CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Baumjohann D, Ansel KM (2013) MicroRNA-mediated regulation of T helper cell differentiation and plasticity. Nat Rev Immunol 13(9):666–678CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Oestreich KJ, Weinmann AS (2012) Encoding stability versus flexibility: lessons learned from examining epigenetics in T helper cell differentiation. Curr Top Microbiol Immunol 356:145–164PubMedGoogle Scholar
  15. 15.
    Fong TA, Mosmann TR (1989) The role of IFN-gamma in delayed-type hypersensitivity mediated by Th1 clones. J Immunol 143(9):2887–2893PubMedGoogle Scholar
  16. 16.
    Nakae S, Komiyama Y, Nambu A, Sudo K, Iwase M, Homma I, Sekikawa K, Asano M, Iwakura Y (2002) Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17(3):375–387CrossRefPubMedGoogle Scholar
  17. 17.
    Chiurchiu V, Battistini L, Maccarrone M (2015) Endocannabinoid signaling in innate and adaptive immunity. Immunology. doi: 10.1111/imm.12441 PubMedPubMedCentralGoogle Scholar
  18. 18.
    McKallip RJ, Nagarkatti M, Nagarkatti PS (2005) Delta-9-tetrahydrocannabinol enhances breast cancer growth and metastasis by suppression of the antitumor immune response. J Immunol 174(6):3281–3289CrossRefPubMedGoogle Scholar
  19. 19.
    Newton CA, Chou PJ, Perkins I, Klein TW (2009) CB(1) and CB(2) cannabinoid receptors mediate different aspects of delta-9-tetrahydrocannabinol (THC)-induced T helper cell shift following immune activation by Legionella pneumophila infection. J Neuroimmune Pharmacol : Off J Soc NeuroImmune Pharmacol 4(1):92–102CrossRefGoogle Scholar
  20. 20.
    Yuan M, Kiertscher SM, Cheng Q, Zoumalan R, Tashkin DP, Roth MD (2002) Delta 9-Tetrahydrocannabinol regulates Th1/Th2 cytokine balance in activated human T cells. J Neuroimmunol 133(1-2):124–131CrossRefPubMedGoogle Scholar
  21. 21.
    Rao R, Nagarkatti PS, Nagarkatti M (2014) Delta tetrahydrocannabinol attenuates Staphylococcal enterotoxin B-induced inflammatory lung injury and prevents mortality in mice by modulation of miR-17-92 cluster and induction of T-regulatory cells. Br J Pharmacol. doi: 10.1111/bph.13026 PubMedPubMedCentralGoogle Scholar
  22. 22.
    Sido JM, Yang X, Nagarkatti PS, Nagarkatti M (2015) Delta9 tetrahydrocannabinol-mediated epigenetic modifications elicit myeloid-derived suppressor cell activation via STAT3/S100A8. J Leukoc Biol. doi: 10.1189/jlb.1A1014-479R PubMedCentralGoogle Scholar
  23. 23.
    Niedbala W, Besnard AG, Jiang HR, Alves-Filho JC, Fukada SY, Nascimento D, Mitani A, Pushparaj P, Alqahtani MH, Liew FY (2013) Nitric oxide-induced regulatory T cells inhibit Th17 but not Th1 cell differentiation and function. J Immunol 191(1):164–170CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kozela E, Juknat A, Kaushansky N, Rimmerman N, Ben-Nun A, Vogel Z (2013) Cannabinoids decrease the th17 inflammatory autoimmune phenotype. J Neuroimmune Pharmacol : Off J Soc NeuroImmune Pharmacol 8(5):1265–1276CrossRefGoogle Scholar
  25. 25.
    Karsak M, Gaffal E, Date R, Wang-Eckhardt L, Rehnelt J, Petrosino S, Starowicz K, Steuder R, Schlicker E, Cravatt B et al (2007) Attenuation of allergic contact dermatitis through the endocannabinoid system. Science 316(5830):1494–1497CrossRefPubMedGoogle Scholar
  26. 26.
    Gaffal E, Cron M, Glodde N, Tuting T (2013) Anti-inflammatory activity of topical THC in DNFB-mediated mouse allergic contact dermatitis independent of CB1 and CB2 receptors. Allergy 68(8):994–1000CrossRefPubMedGoogle Scholar
  27. 27.
    Jackson AR, Nagarkatti P, Nagarkatti M (2014) Anandamide attenuates Th-17 cell-mediated delayed-type hypersensitivity response by triggering IL-10 production and consequent microRNA induction. PLoS One 9(4):e93954CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hegde VL, Tomar S, Jackson A, Rao R, Yang X, Singh UP, Singh NP, Nagarkatti PS, Nagarkatti M (2013) Distinct microRNA expression profile and targeted biological pathways in functional myeloid-derived suppressor cells induced by Delta9-tetrahydrocannabinol in vivo: regulation of CCAAT/enhancer-binding protein alpha by microRNA-690. J Biol Chem 288(52):36810–36826CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Cencioni MT, Chiurchiu V, Catanzaro G, Borsellino G, Bernardi G, Battistini L, Maccarrone M (2010) Anandamide suppresses proliferation and cytokine release from primary human T-lymphocytes mainly via CB2 receptors. PLoS One 5(1):e8688CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Correa F, Hernangomez-Herrero M, Mestre L, Loria F, Docagne F, Guaza C (2011) The endocannabinoid anandamide downregulates IL-23 and IL-12 subunits in a viral model of multiple sclerosis: evidence for a cross-talk between IL-12p70/IL-23 axis and IL-10 in microglial cells. Brain Behav Immun 25(4):736–749CrossRefPubMedGoogle Scholar
  31. 31.
    Lee HY, Stieger M, Yawalkar N, Kakeda M (2013) Cytokines and chemokines in irritant contact dermatitis. Mediat Inflamm 2013:916497Google Scholar
  32. 32.
    Fields PE, Kim ST, Flavell RA (2002) Cutting edge: changes in histone acetylation at the IL-4 and IFN-gamma loci accompany Th1/Th2 differentiation. J Immunol 169(2):647–650CrossRefPubMedGoogle Scholar
  33. 33.
    Yang XO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS, Chung Y, Ma L, Shah B, Panopoulos AD, Schluns KS et al (2008) T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 28(1):29–39CrossRefPubMedGoogle Scholar
  34. 34.
    Huber M, Brustle A, Reinhard K, Guralnik A, Walter G, Mahiny A, von Low E, Lohoff M (2008) IRF4 is essential for IL-21-mediated induction, amplification, and stabilization of the Th17 phenotype. Proc Natl Acad Sci U S A 105(52):20846–20851CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Harris SJ, Parry RV, Westwick J, Ward SG (2008) Phosphoinositide lipid phosphatases: natural regulators of phosphoinositide 3-kinase signaling in T lymphocytes. J Biol Chem 283(5):2465–2469CrossRefPubMedGoogle Scholar
  36. 36.
    Manning AM, Bell FP, Rosenbloom CL, Chosay JG, Simmons CA, Northrup JL, Shebuski RJ, Dunn CJ, Anderson DC (1995) NF-kappa B is activated during acute inflammation in vivo in association with elevated endothelial cell adhesion molecule gene expression and leukocyte recruitment. J Inflamm 45(4):283–296PubMedGoogle Scholar
  37. 37.
    Salehi E, Eftekhari R, Oraei M, Gharib A, Bidad K (2015) MicroRNAs in rheumatoid arthritis. Clin Rheumatol. doi: 10.1007/s10067-015-2898-x PubMedGoogle Scholar
  38. 38.
    Vennegaard MT, Bonefeld CM, Hagedorn PH, Bangsgaard N, Lovendorf MB, Odum N, Woetmann A, Geisler C, Skov L (2012) Allergic contact dermatitis induces upregulation of identical microRNAs in humans and mice. Contact Dermatitis 67(5):298–305CrossRefPubMedGoogle Scholar
  39. 39.
    Murugaiyan G, da Cunha AP, Ajay AK, Joller N, Garo LP, Kumaradevan S, Yosef N, Vaidya VS, Weiner HL (2015) MicroRNA-21 promotes Th17 differentiation and mediates experimental autoimmune encephalomyelitis. J Clin Invest 125(3):1069–1080CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Busbee PB, Nagarkatti M, Nagarkatti PS (2015) Natural indoles, Indole-3-Carbinol (I3C) and 3,3′-Diindolylmethane (DIM), attenuate staphylococcal enterotoxin B-mediated liver injury by downregulating miR-31 expression and promoting caspase-2-mediated apoptosis. PLoS One 10(2):e0118506CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Pandey R, Hegde VL, Nagarkatti M, Nagarkatti PS (2011) Targeting cannabinoid receptors as a novel approach in the treatment of graft-versus-host disease: evidence from an experimental murine model. J Pharmacol Exp Ther 338(3):819–828CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Meza-Sanchez D, Perez-Montesinos G, Sanchez-Garcia J, Moreno J, Bonifaz LC (2011) Intradermal immunization in the ear with cholera toxin and its non-toxic beta subunit promotes efficient Th1 and Th17 differentiation dependent on migrating DCs. Eur J Immunol 41(10):2894–2904CrossRefPubMedGoogle Scholar
  43. 43.
    Newton CA, Lu T, Nazian SJ, Perkins I, Friedman H, Klein TW (2004) The THC-induced suppression of Th1 polarization in response to Legionella pneumophila infection is not mediated by increases in corticosterone and PGE2. J Leukoc Biol 76(4):854–861CrossRefPubMedGoogle Scholar
  44. 44.
    Kong W, Li H, Tuma RF, Ganea D (2014) Selective CB2 receptor activation ameliorates EAE by reducing Th17 differentiation and immune cell accumulation in the CNS. Cell Immunol 287(1):1–17CrossRefPubMedGoogle Scholar
  45. 45.
    Fiorentino DF, Bond MW, Mosmann TR (1989) Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Experiment Med 170(6):2081–2095CrossRefGoogle Scholar
  46. 46.
    Gu Y, Yang J, Ouyang X, Liu W, Li H, Yang J, Bromberg J, Chen SH, Mayer L, Unkeless JC et al (2008) Interleukin 10 suppresses Th17 cytokines secreted by macrophages and T cells. Eur J Immunol 38(7):1807–1813CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355CrossRefPubMedGoogle Scholar
  48. 48.
    Dong L, Wang X, Tan J, Li H, Qian W, Chen J, Chen Q, Wang J, Xu W, Tao C et al (2014) Decreased expression of microRNA-21 correlates with the imbalance of Th17 and Treg cells in patients with rheumatoid arthritis. J Cell Mol Med 18(11):2213–2224CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Smith KM, Guerau-de-Arellano M, Costinean S, Williams JL, Bottoni A, Mavrikis Cox G, Satoskar AR, Croce CM, Racke MK, Lovett-Racke AE et al (2012) miR-29ab1 deficiency identifies a negative feedback loop controlling Th1 bias that is dysregulated in multiple sclerosis. J Immunol 189(4):1567–1576CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Huang C, Zheng JM, Cheng Q, Yu KK, Ling QX, Chen MQ, Li N (2014) Serum microRNA-29 levels correlate with disease progression in patients with chronic hepatitis B virus infection. J Dig Dis 15(11):614–621CrossRefPubMedGoogle Scholar
  51. 51.
    Molina PE, Amedee A, LeCapitaine NJ, Zabaleta J, Mohan M, Winsauer P, Vande Stouwe C (2011) Cannabinoid neuroimmune modulation of SIV disease. J Neuroimmune Pharmacol : Off J Soc NeuroImmune Pharmacol 6(4):516–527CrossRefGoogle Scholar
  52. 52.
    Chandra LC, Kumar V, Torben W, Vande Stouwe C, Winsauer P, Amedee A, Molina PE, Mohan M (2015) Chronic administration of delta9-tetrahydrocannabinol induces intestinal anti-inflammatory microRNA expression during acute simian immunodeficiency virus infection of rhesus macaques. J Virol 89(2):1168–1181CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jessica M. Sido
    • 1
  • Austin R. Jackson
    • 1
  • Prakash S. Nagarkatti
    • 1
  • Mitzi Nagarkatti
    • 1
    • 2
    Email author
  1. 1.Department of Pathology, Microbiology, and ImmunologyUniversity of South Carolina School of MedicineColumbiaUSA
  2. 2.WJB Dorn Veterans Affairs Medical CenterColumbiaUSA

Personalised recommendations