Journal of Molecular Medicine

, Volume 94, Issue 6, pp 667–679 | Cite as

Electronic cigarette inhalation alters innate immunity and airway cytokines while increasing the virulence of colonizing bacteria

  • John H. Hwang
  • Matthew Lyes
  • Katherine Sladewski
  • Shymaa Enany
  • Elisa McEachern
  • Denzil P. Mathew
  • Soumita Das
  • Alexander Moshensky
  • Sagar Bapat
  • David T. Pride
  • Weg M. Ongkeko
  • Laura E. Crotty Alexander
Original Article

Abstract

Electronic (e)-cigarette use is rapidly rising, with 20 % of Americans ages 25–44 now using these drug delivery devices. E-cigarette users expose their airways, cells of host defense, and colonizing bacteria to e-cigarette vapor (EV). Here, we report that exposure of human epithelial cells at the air–liquid interface to fresh EV (vaped from an e-cigarette device) resulted in dose-dependent cell death. After exposure to EV, cells of host defense—epithelial cells, alveolar macrophages, and neutrophils—had reduced antimicrobial activity against Staphylococcus aureus (SA). Mouse inhalation of EV for 1 h daily for 4 weeks led to alterations in inflammatory markers within the airways and elevation of an acute phase reactant in serum. Upon exposure to e-cigarette vapor extract (EVE), airway colonizer SA had increased biofilm formation, adherence and invasion of epithelial cells, resistance to human antimicrobial peptide LL-37, and up-regulation of virulence genes. EVE-exposed SA were more virulent in a mouse model of pneumonia. These data suggest that e-cigarettes may be toxic to airway cells, suppress host defenses, and promote inflammation over time, while also promoting virulence of colonizing bacteria.

Key message

  • Acute exposure to e-cigarette vapor (EV) is cytotoxic to airway cells in vitro.

  • Acute exposure to EV decreases macrophage and neutrophil antimicrobial function.

  • Inhalation of EV alters immunomodulating cytokines in the airways of mice.

  • Inhalation of EV leads to increased markers of inflammation in BAL and serum.

  • Staphylococcus aureus become more virulent when exposed to EV.

Keywords

E-cigarette vapor Staphylococcal virulence Cytotoxicity Inflammatory lung disease Antimicrobial peptide LL-37 MRSA pneumonia 

Supplementary material

109_2016_1378_MOESM1_ESM.pdf (1017 kb)
ESM 1(PDF 0.99 mb)

References

  1. 1.
    King BA (2013) Notes from the field: electronic cigarette use among middle and high school students—United States, 2011-2012 Morbidity and Mortality Weekly Report (MMWR) Centers for Disease Control and Prevention (CDC), Atlanta, pp. 729–730.Google Scholar
  2. 2.
    Czoli CD, Hammond D, White CM (2014) Electronic cigarettes in Canada: prevalence of use and perceptions among youth and young adults. Can J Public Health Revue Canadienne de Sante Publique 105:e97–e102PubMedGoogle Scholar
  3. 3.
    Kinnunen JM, Ollila H, El-Amin SE, Pere LA, Lindfors PL, Rimpela AH (2014) Awareness and determinants of electronic cigarette use among Finnish adolescents in 2013: a population-based study. Tob Control. doi:10.1136/tobaccocontrol-2013-051512 PubMedPubMedCentralGoogle Scholar
  4. 4.
    Lee S, Grana RA, Glantz SA (2014) Electronic cigarette use among Korean adolescents: a cross-sectional study of market penetration, dual use, and relationship to quit attempts and former smoking. J Adolesc Health: Off Publ Soc Adolesc Med 54:684–690CrossRefGoogle Scholar
  5. 5.
    Bostean G, Trinidad DR, McCarthy WJ (2015) E-cigarette use among never-smoking California students. American journal of public health: e1-e3. DOI 10.2105/AJPH.2015.302899
  6. 6.
    Sutfin EL, McCoy TP, Morrell HE, Hoeppner BB, Wolfson M (2013) Electronic cigarette use by college students. Drug Alcohol Depend 131:214–221CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Regan AK, Promoff G, Dube SR, Arrazola R (2013) Electronic nicotine delivery systems: adult use and awareness of the 'e-cigarette' in the USA. Tob Control 22:19–23CrossRefPubMedGoogle Scholar
  8. 8.
    Brown J, West R, Beard E, Michie S, Shahab L, McNeill A (2014) Prevalence and characteristics of e-cigarette users in Great Britain: findings from a general population survey of smokers. Addict Behav 39:1120–1125CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Dawkins L, Turner J, Roberts A, Soar K (2013) 'Vaping' profiles and preferences: an online survey of electronic cigarette users. Addiction 108:1115–1125CrossRefPubMedGoogle Scholar
  10. 10.
    Bauguess AJ (2014) How to make your own e-liquid (e-juice). ecigvape.com.Google Scholar
  11. 11.
    Flouris AD, Chorti MS, Poulianiti KP, Jamurtas AZ, Kostikas K, Tzatzarakis MN, Wallace Hayes A, Tsatsakis AM, Koutedakis Y (2013) Acute impact of active and passive electronic cigarette smoking on serum cotinine and lung function. Inhal Toxicol 25:91–101CrossRefPubMedGoogle Scholar
  12. 12.
    Liu GY (2009) Molecular pathogenesis of Staphylococcus aureus infection. Pediatr Res 65:71R–77RCrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    McEachern EK, Hwang JH, Sladewski KM, Nicatia S, Dewitz C, Mathew DP, Nizet V, Alexander LE (2015) Analysis of the effects of cigarette smoke on staphylococcal virulence phenotypes. Infect Immun 83:2443–2452CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Crotty Alexander LE, Shin S, Hwang JH (2015) Inflammatory diseases of the lung induced by conventional cigarette smoke: a review. Chest. doi:10.1378/chest.15-0409 Google Scholar
  15. 15.
    Foster KA, Oster CG, Mayer MM, Avery ML, Audus KL (1998) Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Exp Cell Res 243:359–366CrossRefPubMedGoogle Scholar
  16. 16.
    Grando SA (2008) Basic and clinical aspects of non-neuronal acetylcholine: biological and clinical significance of non-canonical ligands of epithelial nicotinic acetylcholine receptors. J Pharmacol Sci 106:174–179CrossRefPubMedGoogle Scholar
  17. 17.
    Thunnissen FB (2009) Acetylcholine receptor pathway and lung cancer. J Thorac Oncol: Off Publ Int Assoc Study Lung Cancer 4:943–946CrossRefGoogle Scholar
  18. 18.
    Bermudez Y, Benavente CA, Meyer RG, Coyle WR, Jacobson MK, Jacobson EL (2011) Nicotinic acid receptor abnormalities in human skin cancer: implications for a role in epidermal differentiation. PLoS ONE 6, e20487. doi:10.1371/journal.pone.0020487 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Reynolds PR, Allison CH, Willnauer CP (2010) TTF-1 regulates alpha5 nicotinic acetylcholine receptor (nAChR) subunits in proximal and distal lung epithelium. Respir Res 11:175CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ma X, Jia Y, Zu S, Li R, Zhao Y, Xiao D, Dang N, Wang Y (2014) alpha5 Nicotinic acetylcholine receptor mediates nicotine-induced HIF-1alpha and VEGF expression in non-small cell lung cancer. Toxicol Appl Pharmacol 278:172–179CrossRefPubMedGoogle Scholar
  21. 21.
    Comer DM, Elborn JS, Ennis M (2014) Inflammatory and cytotoxic effects of acrolein, nicotine, acetylaldehyde and cigarette smoke extract on human nasal epithelial cells. BMC Pulm Med 14:32CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Streck E, Jorres RA, Huber RM, Bergner A (2010) Effects of cigarette smoke extract and nicotine on bronchial tone and acetylcholine-induced airway contraction in mouse lung slices. J Investig Allergol Clin Immunol 20:324–330PubMedGoogle Scholar
  23. 23.
    Askarian F, Sangvik M, Hanssen AM, Snipen L, Sollid JU, Johannessen M (2014) Staphylococcus aureus nasal isolates from healthy individuals cause highly variable host cell responses in vitro: the Tromso Staph and Skin Study. Pathog Dis 70:158–166CrossRefPubMedGoogle Scholar
  24. 24.
    Pegtel DM, Subramanian A, Sheen TS, Tsai CH, Golub TR, Thorley-Lawson DA (2005) Epstein-Barr-virus-encoded LMP2A induces primary epithelial cell migration and invasion: possible role in nasopharyngeal carcinoma metastasis. J Virol 79:15430–15442CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Condliffe AM, Kitchen E, Chilvers ER (1998) Neutrophil priming: pathophysiological consequences and underlying mechanisms. Clin Sci 94:461–471CrossRefPubMedGoogle Scholar
  26. 26.
    Bermudez EA, Rifai N, Buring J, Manson JE, Ridker PM (2002) Interrelationships among circulating interleukin-6, C-reactive protein, and traditional cardiovascular risk factors in women. Arterioscler Thromb Vasc Biol 22:1668–1673CrossRefPubMedGoogle Scholar
  27. 27.
    Rohde LE, Hennekens CH, Ridker PM (1999) Survey of C-reactive protein and cardiovascular risk factors in apparently healthy men. Am J Cardiol 84:1018–1022CrossRefPubMedGoogle Scholar
  28. 28.
    Magnusson KE (1982) Hydrophobic interaction—a mechanism of bacterial binding. Scand J Infect Dis Suppl 33:32–36PubMedGoogle Scholar
  29. 29.
    Dahlback B, Hermansson M, Kjelleberg S, Norkrans B (1981) The hydrophobicity of bacteria—an important factor in their initial adhesion at the air-water interface. Arch Microbiol 128:267–270CrossRefPubMedGoogle Scholar
  30. 30.
    Yang ES, Tan J, Eells S, Rieg G, Tagudar G, Miller LG (2010) Body site colonization in patients with community-associated methicillin-resistant Staphylococcus aureus and other types of S. aureus skin infections. Clin Microbiol Infect: Off Publ Eur Soc Clin Microbiol Infect Dis 16:425–431CrossRefGoogle Scholar
  31. 31.
    Wang G (2008) Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J Biol Chem 283:32637–32643CrossRefPubMedGoogle Scholar
  32. 32.
    Neville F, Cahuzac M, Konovalov O, Ishitsuka Y, Lee KY, Kuzmenko I, Kale GM, Gidalevitz D (2006) Lipid headgroup discrimination by antimicrobial peptide LL-37: insight into mechanism of action. Biophys J 90:1275–1287CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Neville F, Gidalevitz D, Kale G, Nelson A (2007) Electrochemical screening of anti-microbial peptide LL-37 interaction with phospholipids. Bioelectrochemistry 70:205–213CrossRefPubMedGoogle Scholar
  34. 34.
    Park EJ, Lee GH, Yoon C, Jeong U, Kim Y, Cho MH, Kim DW (2015) Biodistribution and toxicity of spherical aluminum oxide nanoparticles. J Appl Toxicol: JAT. doi:10.1002/jat.3233 Google Scholar
  35. 35.
    Viard I, Wehrli P, Bullani R, Schneider P, Holler N, Salomon D, Hunziker T, Saurat JH, Tschopp J, French LE (1998) Inhibition of toxic epidermal necrolysis by blockade of CD95 with human intravenous immunoglobulin. Science 282:490–493CrossRefPubMedGoogle Scholar
  36. 36.
    Herzog E, Casey A, Lyng FM, Chambers G, Byrne HJ, Davoren M (2007) A new approach to the toxicity testing of carbon-based nanomaterials—the clonogenic assay. Toxicol Lett 174:49–60CrossRefPubMedGoogle Scholar
  37. 37.
    Farsalinos KE, Romagna G, Allifranchini E, Ripamonti E, Bocchietto E, Todeschi S, Tsiapras D, Kyrzopoulos S, Voudris V (2013) Comparison of the cytotoxic potential of cigarette smoke and electronic cigarette vapour extract on cultured myocardial cells. Int J Environ Res Public Health 10(10):5146–5162CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Schweitzer KS, Chen SX, Law S, Van Demark M, Poirier C, Justice MJ, Hubbard WC, Kim ES, Lai X, Wang M et al (2015) Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures. Am J Physiol Lung Cell Mol Physiol 309(2):L175–L187CrossRefPubMedGoogle Scholar
  39. 39.
    Savill J, Dransfield I, Gregory C, Haslett C (2002) A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2:965–975CrossRefPubMedGoogle Scholar
  40. 40.
    Kaczmarek A, Vandenabeele P, Krysko DV (2013) Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38:209–223CrossRefPubMedGoogle Scholar
  41. 41.
    El Mezayen R, El Gazzar M, Seeds MC, McCall CE, Dreskin SC, Nicolls MR (2007) Endogenous signals released from necrotic cells augment inflammatory responses to bacterial endotoxin. Immunol Lett 111:36–44CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Radsak MP, Taube C, Haselmayer P, Tenzer S, Salih HR, Wiewrodt R, Buhl R, Schild H (2007) Soluble triggering receptor expressed on myeloid cells 1 is released in patients with stable chronic obstructive pulmonary disease. Clin Dev Immunol 2007:52040CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Papanikolaou IC, Boki KA, Giamarellos-Bourboulis EJ, Kotsaki A, Kagouridis K, Karagiannidis N, Polychronopoulos VS (2015) Innate immunity alterations in idiopathic interstitial pneumonias and rheumatoid arthritis-associated interstitial lung diseases. Immunol Lett 163:179–186CrossRefPubMedGoogle Scholar
  44. 44.
    Molad Y, Ofer-Shiber S, Pokroy-Shapira E, Oren S, Shay-Aharoni H, Babai I (2015) Soluble triggering receptor expressed on myeloid cells-1 is a biomarker of anti-CCP-positive, early rheumatoid arthritis. Eur J Clin Investig 45:557–564CrossRefGoogle Scholar
  45. 45.
    Sussan TE, Gajghate S, Thimmulappa RK, Ma J, Kim JH, Sudini K, Consolini N, Cormier SA, Lomnicki S, Hasan F et al (2015) Exposure to electronic cigarettes impairs pulmonary anti-bacterial and anti-viral defenses in a mouse model. PLoS ONE 10(2), e0116861. doi:10.1371/journal.pone.0116861 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Wu Q, Jiang D, Minor M, Chu HW (2014) Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells. PLoS ONE 9(9), e108342. doi:10.1371/journal.pone.0108342 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Cheng AG, McAdow M, Kim HK, Bae T, Missiakas DM, Schneewind O (2010) Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS Pathog 6, e1001036. doi:10.1371/journal.ppat.1001036 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Hamilton SM, Bryant AE, Carroll KC, Lockary V, Ma Y, McIndoo E, Miller LG, Perdreau-Remington F, Pullman J, Risi GF et al (2007) In vitro production of panton-valentine leukocidin among strains of methicillin-resistant Staphylococcus aureus causing diverse infections. Clin Infect Dis: Off Publ Infect Dis Soc Am 45:1550–1558CrossRefGoogle Scholar
  49. 49.
    Montgomery CP, Boyle-Vavra S, Adem PV, Lee JC, Husain AN, Clasen J, Daum RS (2008) Comparison of virulence in community-associated methicillin-resistant Staphylococcus aureus pulsotypes USA300 and USA400 in a rat model of pneumonia. J Infect Dis 198:561–570CrossRefPubMedGoogle Scholar
  50. 50.
    Gillet Y, Issartel B, Vanhems P, Fournet JC, Lina G, Bes M, Vandenesch F, Piemont Y, Brousse N, Floret D et al (2002) Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet 359:753–759CrossRefPubMedGoogle Scholar
  51. 51.
    Crotty Alexander LE, Maisey HC, Timmer AM, Rooijakkers SH, Gallo RL, von Kockritz-Blickwede M, Nizet V (2010) M1T1 group A streptococcal pili promote epithelial colonization but diminish systemic virulence through neutrophil extracellular entrapment. J Mol Med 88:371–381CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2016

Authors and Affiliations

  • John H. Hwang
    • 1
    • 2
  • Matthew Lyes
    • 1
    • 8
  • Katherine Sladewski
    • 1
  • Shymaa Enany
    • 3
    • 1
  • Elisa McEachern
    • 1
    • 7
  • Denzil P. Mathew
    • 1
  • Soumita Das
    • 4
  • Alexander Moshensky
    • 1
  • Sagar Bapat
    • 5
  • David T. Pride
    • 4
  • Weg M. Ongkeko
    • 6
  • Laura E. Crotty Alexander
    • 1
    • 2
  1. 1.Pulmonary and Critical Care SectionVA San Diego Healthcare SystemSan DiegoUSA
  2. 2.Department of Medicine, Division of Pulmonary and Critical CareUniversity of California at San Diego (UCSD)La JollaUSA
  3. 3.Microbiology and Immunology Department, Faculty of PharmacySuez Canal UniversityIsmailiaEgypt
  4. 4.Departments of Pathology and MedicineUCSDLa JollaUSA
  5. 5.Salk Institute for Biological StudiesLa JollaUSA
  6. 6.Division of Head and Neck Surgery, Department of SurgeryUCSDLa JollaUSA
  7. 7.Weill Cornell Medical CollegeNew YorkUSA
  8. 8.Duke University School of MedicineDurhamUSA

Personalised recommendations