Journal of Molecular Medicine

, Volume 94, Issue 3, pp 335–346 | Cite as

Restoration of Opa1-long isoform inhibits retinal injury-induced neurodegeneration

  • Yue Sun
  • Weili Xue
  • Zhiyin Song
  • Kun HuangEmail author
  • Ling ZhengEmail author
Original Article


Optic atrophy 1 (Opa1) is a critical factor that regulates fusion and other important functions of mitochondria. In mitochondrion, the N-terminal mitochondrial targeting sequence of Opa1 precursors is removed to generate Opa1 long isoforms (L-Opa1), which are further cleaved into short isoforms (S-Opa1). In the present study, we found that retinal ischemia–reperfusion (I/R) injury and intravitreal injection of carbonylcyanide m-chlorophenyl hydrazone (CCCP) both dramatically induced Opa1 cleavage and caused loss of L-Opa1. In cultured neuronal cells under hypoxia–reoxygenation (H/R) injury, similar changes for Opa1 were also observed. In contrast, restoration of L-Opa1 level by overexpression of S1 cleavage site deletion Opa1 splice 1 (Opa1-ΔS1) not only normalized the H/R-induced mitochondrial morphology changes, but also inhibited the H/R-induced apoptosis, necrosis, and the intracellular ATP loss. Furthermore, recovering L-Opa1 level in the I/R-injured retina by intravitreal injection of genipin or overexpression of Opa1-ΔS1 inhibited apoptosis, necrosis, cell loss in the ganglion cell layer and retinal thickness reduction. Together, our data demonstrated the loss of L-Opa1 is involved in the development of retinal I/R injury, indicating restoring L-Opa1 level may be considered as a therapeutic target for I/R injury-related diseases, at least for the retina.

Key messages

  • Retinal ischemia–reperfusion (I/R) or hypoxia–reoxygenation (H/R) injury induces L-Opa1 loss.

  • Opa1-ΔS1 overexpression inhibits H/R-induced L-Opa1 loss.

  • Opa1-ΔS1 overexpression inhibits H/R-induced mitochondria morphology change.

  • Opa1-ΔS1 and genipin inhibit retinal I/R injury-induced necroptosis.

  • Opa1-ΔS1 and genipin inhibit retinal I/R injury-induced neurodegeneration.


Opa1 Neurodegeneration Genipin Retinal injury Apoptosis and necrosis 



This work was supported by the National Basic Research Program of China (2012CB524901) and the Natural Science Foundation of China (81202557, 31271370, 81172971, and 31471208).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interests.

Supplementary material

109_2015_1359_MOESM1_ESM.docx (287 kb)
ESM 1 (DOCX 287 kb)


  1. 1.
    Ishihara N, Nomura M, Jofuku A, Kato H, Suzuki SO, Masuda K, Otera H, Nakanishi Y, Nonaka I, Goto Y et al (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 11:958–966CrossRefPubMedGoogle Scholar
  2. 2.
    Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160:189–200CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rahn JJ, Stackley KD, Chan SS (2013) Opa1 is required for proper mitochondrial metabolism in early development. PLoS One 8:e59218CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chen H, Chomyn A, Chan DC (2005) Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280:26185–26192CrossRefPubMedGoogle Scholar
  5. 5.
    Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM, Chan DC (2010) Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141:280–289CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G et al (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, Rodriguez M, Kellner U, Leo-Kottler B, Auburger G et al (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26:211–215CrossRefPubMedGoogle Scholar
  8. 8.
    Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka T, Bartoli D, Polishuck RS, Danial NN, De Strooper B et al (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126:177–189CrossRefPubMedGoogle Scholar
  9. 9.
    Song Z, Chen H, Fiket M, Alexander C, Chan DC (2007) OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol 178:749–755CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Duvezin-Caubet S, Jagasia R, Wagener J, Hofmann S, Trifunovic A, Hansson A, Chomyn A, Bauer MF, Attardi G, Larsson NG et al (2006) Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. J Biol Chem 281:37972–37979CrossRefPubMedGoogle Scholar
  11. 11.
    Campello L, Esteve-Rudd J, Bru-Martinez R, Herrero MT, Fernandez-Villalba E, Cuenca N, Martin-Nieto J (2013) Alterations in energy metabolism, neuroprotection and visual signal transduction in the retina of Parkinsonian, MPTP-treated monkeys. PLoS One 8:e74439CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Osborne NN, Casson RJ, Wood JP, Chidlow G, Graham M, Melena J (2004) Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res 23:91–147CrossRefPubMedGoogle Scholar
  13. 13.
    Ju WK, Kim KY, Duong-Polk KX, Lindsey JD, Ellisman MH, Weinreb RN (2010) Increased optic atrophy type 1 expression protects retinal ganglion cells in a mouse model of glaucoma. Mol Vis 16:1331–1342PubMedPubMedCentralGoogle Scholar
  14. 14.
    Coughlin L, Morrison RS, Horner PJ, Inman DM (2015) Mitochondrial morphology differences and mitophagy deficit in murine glaucomatous optic nerve. Invest Ophthalmol Vis Sci 56:1437–1446CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Park SW, Kim KY, Lindsey JD, Dai Y, Heo H, Nguyen DH, Ellisman MH, Weinreb RN, Ju WK (2011) A selective inhibitor of drp1, mdivi-1, increases retinal ganglion cell survival in acute ischemic mouse retina. Invest Ophthalmol Vis Sci 52:2837–2843CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhang CY, Parton LE, Ye CP, Krauss S, Shen R, Lin CT, Porco JA Jr, Lowell BB (2006) Genipin inhibits UCP2-mediated proton leak and acutely reverses obesity- and high glucose-induced beta cell dysfunction in isolated pancreatic islets. Cell Metab 3:417–427CrossRefPubMedGoogle Scholar
  17. 17.
    Wang L, Li C, Guo H, Kern TS, Huang K, Zheng L (2011) Curcumin inhibits neuronal and vascular degeneration in retina after ischemia and reperfusion injury. PLoS One 6:e23194CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sippl C, Tamm ER (2014) What is the nature of the RGC-5 cell line? Adv Exp Med Biol 801:145–154CrossRefPubMedGoogle Scholar
  19. 19.
    Jose A, Krishnan LK (2010) Effect of matrix composition on differentiation of nestin-positive neural progenitors from circulation into neurons. J Neural Eng 7:036009CrossRefPubMedGoogle Scholar
  20. 20.
    Pimentel B, Sanz C, Varela-Nieto I, Rapp UR, De Pablo F, de La Rosa EJ (2000) c-Raf regulates cell survival and retinal ganglion cell morphogenesis during neurogenesis. J Neurosci 20:3254–3262PubMedGoogle Scholar
  21. 21.
    Krishnamoorthy RR, Clark AF, Daudt D, Vishwanatha JK, Yorio T (2013) A forensic path to RGC-5 cell line identification: lessons learned. Invest Ophthalmol Vis Sci 54:5712–5719CrossRefPubMedGoogle Scholar
  22. 22.
    Gooley JJ, Lu J, Fischer D, Saper CB (2003) A broad role for melanopsin in nonvisual photoreception. J Neurosci 23:7093–7106PubMedGoogle Scholar
  23. 23.
    Chen H, Wan D, Wang L, Peng A, Xiao H, Petersen RB, Liu C, Zheng L, Huang K (2015) Apelin protects against acute renal injury by inhibiting TGF-beta1. Biochim Biophys Acta 1852:1278–1287CrossRefPubMedGoogle Scholar
  24. 24.
    Cai R, Xue W, Liu S, Petersen RB, Huang K, Zheng L (2015) Overexpression of glyceraldehyde 3-phosphate dehydrogenase prevents neurovascular degeneration after retinal injury. FASEB J 29:2749–2758CrossRefPubMedGoogle Scholar
  25. 25.
    Bauerly K, Harris C, Chowanadisai W, Graham J, Havel PJ, Tchaparian E, Satre M, Karliner JS, Rucker RB (2011) Altering pyrroloquinoline quinone nutritional status modulates mitochondrial, lipid, and energy metabolism in rats. PLoS One 6:e21779CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    An HJ, Cho G, Lee JO, Paik SG, Kim YS, Lee H (2013) Higd-1a interacts with Opa1 and is required for the morphological and functional integrity of mitochondria. Proc Natl Acad Sci U S A 110:13014–13019CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Pawlus MR, Hu CJ (2013) Enhanceosomes as integrators of hypoxia inducible factor (HIF) and other transcription factors in the hypoxic transcriptional response. Cell Signal 25:1895–1903CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Li C, Wang L, Kern TS, Zheng L (2012) Inhibition of poly(ADP-ribose) polymerase inhibits ischemia/reperfusion induced neurodegeneration in retina via suppression of endoplasmic reticulum stress. Biochem Biophys Res Commun 423:276–281CrossRefPubMedGoogle Scholar
  29. 29.
    Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:1112–1123CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Xu M, Zhang HL (2011) Death and survival of neuronal and astrocytic cells in ischemic brain injury: a role of autophagy. Acta Pharmacol Sin 32:1089–1099CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sabel BA, Henrich-Noack P, Fedorov A, Gall C (2011) Vision restoration after brain and retina damage: the “residual vision activation theory”. Prog Brain Res 192:199–262CrossRefPubMedGoogle Scholar
  32. 32.
    Gao H, Zhang HL, Shou J, Chen L, Shen Y, Tang Q, Huang J, Zhu J (2012) Towards retinal ganglion cell regeneration. Regen Med 7:865–875CrossRefPubMedGoogle Scholar
  33. 33.
    Varanita T, Soriano ME, Romanello V, Zaglia T, Quintana-Cabrera R, Semenzato M, Menabo R, Costa V, Civiletto G, Pesce P et al (2015) The opa1-dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage. Cell Metab 21:834–844CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhang L, He Z, Zhang Q, Wu Y, Yang X, Niu W, Hu Y, Jia J (2014) Exercise pretreatment promotes mitochondrial dynamic protein OPA1 expression after cerebral ischemia in rats. Int J Mol Sci 15:4453–4463CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Jahani-Asl A, Pilon-Larose K, Xu W, MacLaurin JG, Park DS, McBride HM, Slack RS (2011) The mitochondrial inner membrane GTPase, optic atrophy 1 (Opa1), restores mitochondrial morphology and promotes neuronal survival following excitotoxicity. J Biol Chem 286:4772–4782CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Williams PA, Morgan JE, Votruba M (2010) Opa1 deficiency in a mouse model of dominant optic atrophy leads to retinal ganglion cell dendropathy. Brain 133:2942–2951CrossRefPubMedGoogle Scholar
  37. 37.
    Bertholet AM, Millet AM, Guillermin O, Daloyau M, Davezac N, Miquel MC, Belenguer P (2013) OPA1 loss of function affects in vitro neuronal maturation. Brain 136:1518–1533CrossRefPubMedGoogle Scholar
  38. 38.
    Chen L, Gong Q, Stice JP, Knowlton AA (2009) Mitochondrial OPA1, apoptosis, and heart failure. Cardiovasc Res 84:91–99CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Jiang HK, Wang YH, Sun L, He X, Zhao M, Feng ZH, Yu XJ, Zang WJ (2014) Aerobic interval training attenuates mitochondrial dysfunction in rats post-myocardial infarction: roles of mitochondrial network dynamics. Int J Mol Sci 15:5304–5322CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Xiao X, Hu Y, Quiros PM, Wei Q, Lopez-Otin C, Dong Z (2014) OMA1 mediates OPA1 proteolysis and mitochondrial fragmentation in experimental models of ischemic kidney injury. Am J Physiol Renal Physiol 306:F1318–F1326CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Winkler BS, Arnold MJ, Brassell MA, Sliter DR (1997) Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats. Invest Ophthalmol Vis Sci 38:62–71PubMedGoogle Scholar
  42. 42.
    Dvoriantchikova G, Barakat DJ, Hernandez E, Shestopalov VI, Ivanov D (2010) Liposome-delivered ATP effectively protects the retina against ischemia-reperfusion injury. Mol Vis 16:2882–2890PubMedPubMedCentralGoogle Scholar
  43. 43.
    Patten DA, Wong J, Khacho M, Soubannier V, Mailloux RJ, Pilon-Larose K, MacLaurin JG, Park DS, McBride HM, Trinkle-Mulcahy L et al (2014) OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO J 33:2676–2691CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Lee B, Ahn Y, Kang SM, Park Y, Jeon YJ, Rho JM, Kim SW (2015) Stoichiometric expression of mtHsp40 and mtHsp70 modulates mitochondrial morphology and cristae structure via Opa1L cleavage. Mol Biol Cell 26:2156–2167CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kushnareva YE, Gerencser AA, Bossy B, Ju WK, White AD, Waggoner J, Ellisman MH, Perkins G, Bossy-Wetzel E (2013) Loss of OPA1 disturbs cellular calcium homeostasis and sensitizes for excitotoxicity. Cell Death Differ 20:353–365CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ramonet D, Perier C, Recasens A, Dehay B, Bove J, Costa V, Scorrano L, Vila M (2013) Optic atrophy 1 mediates mitochondria remodeling and dopaminergic neurodegeneration linked to complex I deficiency. Cell Death Differ 20:77–85CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Civiletto G, Varanita T, Cerutti R, Gorletta T, Barbaro S, Marchet S, Lamperti C, Viscomi C, Scorrano L, Zeviani M (2015) Opa1 overexpression ameliorates the phenotype of two mitochondrial disease mouse models. Cell Metab 21:845–854CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Molina AJ, Wikstrom JD, Stiles L, Las G, Mohamed H, Elorza A, Walzer G, Twig G, Katz S, Corkey BE et al (2009) Mitochondrial networking protects beta-cells from nutrient-induced apoptosis. Diabetes 58:2303–2315CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Fang HY, Chen CY, Chiou SH, Wang YT, Lin TY, Chang HW, Chiang IP, Lan KJ, Chow KC (2012) Overexpression of optic atrophy 1 protein increases cisplatin resistance via inactivation of caspase-dependent apoptosis in lung adenocarcinoma cells. Hum Pathol 43:105–114CrossRefPubMedGoogle Scholar
  50. 50.
    Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325:332–336CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.College of Life SciencesWuhan UniversityWuhanPeople’s Republic of China
  2. 2.Tongji School of PharmacyHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations