Journal of Molecular Medicine

, Volume 94, Issue 1, pp 5–11 | Cite as

Molecules in medicine mini-review: isoforms of PI3K in biology and disease

  • Bart VanhaesebroeckEmail author
  • Maria A. Whitehead
  • Roberto Piñeiro
Molecules in Medicine


The PI3K lipid kinases are involved in signal transduction and intracellular vesicular traffic, endowing these enzymes with multiple cellular functions and important roles in normal physiology and disease. In this mini-review, we aim to distill from the vast PI3K literature the key relevant concepts for successful targeting of this pathway in disease. Of the eight isoforms of PI3K, the class I PI3Ks have been implicated in the aetiology and maintenance of various diseases, most prominently cancer, overgrowth syndromes, inflammation and autoimmunity, with emerging potential roles in metabolic and cardiovascular disorders. The development of class I PI3K inhibitors, mainly for use in cancer and inflammation, is a very active area of drug development. In 2014, an inhibitor of the p110δ isoform of PI3K was approved for the treatment of specific human B cell malignancies. The key therapeutic indications of targeting each class I PI3K isoform are summarized and discussed.


PI3K Signalling Vesicular traffic Cancer Overgrowth syndrome Immunity Inflammation Autoimmunity Diabetes Obesity Metabolic syndrome Pharmacological inhibitor 



Work in the laboratory of B.V. was supported by Cancer Research UK [C23338/A15965], the UK Biotechnology and Biological Sciences Research Council [BB/I007806/1], the Ludwig Institute for Cancer Research and the National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre.

The authors apologize to those authors whose work could not be cited due to space constraints.

Compliance with ethical standards

Competing interests

BV is a consultant to Karus Therapeutics (Oxford, UK).


  1. 1.
    Vanhaesebroeck B, Ali K, Bilancio A, Geering B, Foukas LC (2005) Signalling by PI3K isoforms: insights from gene-targeted mice. Trends Biochem Sci 30(4):194–204PubMedCrossRefGoogle Scholar
  2. 2.
    Hirsch E, Braccini L, Ciraolo E, Morello F, Perino A (2009) Twice upon a time: PI3K’s secret double life exposed. Trends Biochem Sci 34(5):244–248PubMedCrossRefGoogle Scholar
  3. 3.
    Alliouachene S, Bilanges B, Chicanne G, Anderson KE, Pearce W, Ali K, Valet C, Posor Y, Low PC, Chaussade C et al (2015) Inactivation of the class II PI3K-C2β potentiates insulin signaling and sensitivity. Cell Reports accepted for publicationGoogle Scholar
  4. 4.
    Bilanges B, Vanhaesebroeck B (2014) Cinderella finds her shoe: the first Vps34 inhibitor uncovers a new PI3K-AGC protein kinase connection. Biochem J 464(2):e7–e10PubMedCrossRefGoogle Scholar
  5. 5.
    Burke JE, Perisic O, Masson GR, Vadas O, Williams RL (2012) Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110alpha (PIK3CA). Proc Natl Acad Sci U S A 109(38):15259–15264PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Kurek KC, Luks VL, Ayturk UM, Alomari AI, Fishman SJ, Spencer SA, Mulliken JB, Bowen ME, Yamamoto GL, Kozakewich HP et al (2012) Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am J Hum Genet 90(6):1108–1115PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Lindhurst MJ, Parker VE, Payne F, Sapp JC, Rudge S, Harris J, Witkowski AM, Zhang Q, Groeneveld MP, Scott CE et al (2012) Mosaic overgrowth with fibroadipose hyperplasia is caused by somatic activating mutations in PIK3CA. Nat Genet 44(8):928–933PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Riviere JB, Mirzaa GM, O’Roak BJ, Beddaoui M, Alcantara D, Conway RL, St-Onge J, Schwartzentruber JA, Gripp KW, Nikkel SM et al (2012) De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet 44(8):934–940PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Lee JH, Huynh M, Silhavy JL, Kim S, Dixon-Salazar T, Heiberg A, Scott E, Bafna V, Hill KJ, Collazo A et al (2012) De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet 44(8):941–945PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Keppler-Noreuil KM, Sapp JC, Lindhurst MJ, Parker VE, Blumhorst C, Darling T, Tosi LL, Huson SM, Whitehouse RW, Jakkula E et al (2014) Clinical delineation and natural history of the PIK3CA-related overgrowth spectrum. Am J Med Genet A 164(7):1713–1733PubMedCentralCrossRefGoogle Scholar
  11. 11.
    Van Keymeulen A, Lee MY, Ousset M, Brohee S, Rorive S, Giraddi RR, Wuidart A, Bouvencourt G, Dubois C, Salmon I et al (2015) Reactivation of multipotency by oncogenic PIK3CA induces breast tumour heterogeneity. Nature 525(7567):119–123PubMedCrossRefGoogle Scholar
  12. 12.
    Koren S, Reavie L, Couto JP, De Silva D, Stadler MB, Roloff T, Britschgi A, Eichlisberger T, Kohler H, Aina O et al (2015) PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumours. Nature 525(7567):114–118PubMedCrossRefGoogle Scholar
  13. 13.
    Fritsch C, Huang A, Chatenay-Rivauday C, Schnell C, Reddy A, Liu M, Kauffmann A, Guthy D, Erdmann D, De Pover A et al (2014) Characterization of the novel and specific PI3Kalpha inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials. Mol Cancer Ther 13(5):1117–1129PubMedCrossRefGoogle Scholar
  14. 14.
    Weigelt B, Downward J (2012) Genomic determinants of PI3K pathway inhibitor response in cancer. Front Oncol 2:109PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Foukas LC, Claret M, Pearce W, Okkenhaug K, Meek S, Peskett E, Sancho S, Smith AJ, Withers DJ, Vanhaesebroeck B (2006) Critical role for the p110alpha phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 441(7091):366–370PubMedCrossRefGoogle Scholar
  16. 16.
    Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O, Loewith R, Stokoe D, Balla A, Toth B et al (2006) A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 125(4):733–747PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Foukas LC, Bilanges B, Bettedi L, Pearce W, Ali K, Sancho S, Withers DJ, Vanhaesebroeck B (2013) Long-term p110alpha PI3K inactivation exerts a beneficial effect on metabolism. EMBO Mol Med 5(4):563–571PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Ortega-Molina A, Lopez-Guadamillas E, Mattison JA, Mitchell SJ, Munoz-Martin M, Iglesias G, Gutierrez VM, Vaughan KL, Szarowicz MD, Gonzalez-Garcia I et al (2015) Pharmacological inhibition of PI3K reduces adiposity and metabolic syndrome in obese mice and rhesus monkeys. Cell Metab 21(4):558–570PubMedCrossRefGoogle Scholar
  19. 19.
    Ramadani F, Bolland DJ, Garcon F, Emery JL, Vanhaesebroeck B, Corcoran AE, Okkenhaug K (2010) The PI3K isoforms p110alpha and p110delta are essential for pre-B cell receptor signaling and B cell development. Sci Signal 3(134):ra60PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Jackson SP, Schoenwaelder SM, Goncalves I, Nesbitt WS, Yap CL, Wright CE, Kenche V, Anderson KE, Dopheide SM, Yuan Y et al (2005) PI 3-kinase p110beta: a new target for antithrombotic therapy. Nat Med 11(5):507–514PubMedCrossRefGoogle Scholar
  21. 21.
    Giordanetto F, Wallberg A, Ghosal S, Iliefski T, Cassel J, Yuan ZQ, von Wachenfeldt H, Andersen SM, Inghardt T, Tunek A et al (2012) Discovery of phosphoinositide 3-kinases (PI3K) p110beta isoform inhibitor 4-[2-hydroxyethyl(1-naphthylmethyl)amino]-6-[(2S)-2-methylmorpholin-4-yl]-1H-pyri midin-2-one, an effective antithrombotic agent without associated bleeding and insulin resistance. Bioorg Med Chem Lett 22(21):6671–6676PubMedCrossRefGoogle Scholar
  22. 22.
    Nylander S, Wagberg F, Andersson M, Skarby T, Gustafsson D (2015) Exploration of efficacy and bleeding with combined phosphoinositide 3-kinase beta inhibition and aspirin in man. J Thromb Haemost 13(8):1494–1502PubMedCrossRefGoogle Scholar
  23. 23.
    Laurent PA, Severin S, Gratacap MP, Payrastre B (2014) Class I PI 3-kinases signaling in platelet activation and thrombosis: PDK1/Akt/GSK3 axis and impact of PTEN and SHIP1. Adv Biol Regul 54:162–174PubMedCrossRefGoogle Scholar
  24. 24.
    Pazarentzos E, Giannikopoulos P, Hrustanovic G, St John J, Olivas VR, Gubens MA, Balassanian R, Weissman J, Polkinghorn W, Bivona TG (2015) Oncogenic activation of the PI3-kinase p110beta isoform via the tumor-derived PIK3Cbeta kinase domain mutation. OncogeneGoogle Scholar
  25. 25.
    Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, Montgomery B, Taplin ME, Pritchard CC, Attard G et al (2015) Integrative clinical genomics of advanced prostate cancer. Cell 161(5):1215–1228PubMedCrossRefGoogle Scholar
  26. 26.
    Jaiswal BS, Janakiraman V, Kljavin NM, Chaudhuri S, Stern HM, Wang W, Kan Z, Dbouk HA, Peters BA, Waring P et al (2009) Somatic mutations in p85alpha promote tumorigenesis through class IA PI3K activation. Cancer Cell 16(6):463–474PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Berenjeno IM, Guillermet-Guibert J, Pearce W, Gray A, Fleming S, Vanhaesebroeck B (2012) Both p110alpha and p110beta isoforms of PI3K can modulate the impact of loss-of-function of the PTEN tumour suppressor. Biochem J 442(1):151–159PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Schmit F, Utermark T, Zhang S, Wang Q, Von T, Roberts TM, Zhao JJ (2014) PI3K isoform dependence of PTEN-deficient tumors can be altered by the genetic context. Proc Natl Acad Sci U S A 111(17):6395–6400PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Jiang X, Chen S, Asara JM, Balk SP (2010) Phosphoinositide 3-kinase pathway activation in phosphate and tensin homolog (PTEN)-deficient prostate cancer cells is independent of receptor tyrosine kinases and mediated by the p110beta and p110delta catalytic subunits. J Biol Chem 285(20):14980–14989PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Zhu Q, Youn H, Tang J, Tawfik O, Dennis K, Terranova PF, Du J, Raynal P, Thrasher JB, Li B (2008) Phosphoinositide 3-OH kinase p85alpha and p110beta are essential for androgen receptor transactivation and tumor progression in prostate cancers. Oncogene 27(33):4569–4579PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Guillermet-Guibert J, Smith LB, Halet G, Whitehead MA, Pearce W, Rebourcet D, Leon K, Crepieux P, Nock G, Stromstedt M et al (2015) Novel role for p110beta PI 3-kinase in male fertility through regulation of androgen receptor activity in Sertoli cells. PLoS Genet 11(7):e1005304PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Marques RB, Aghai A, de Ridder CM, Stuurman D, Hoeben S, Boer A, Ellston RP, Barry ST, Davies BR, Trapman J et al (2015) High efficacy of combination therapy using PI3K/AKT inhibitors with androgen deprivation in prostate cancer preclinical models. Eur Urol 67(6):1177–1185PubMedCrossRefGoogle Scholar
  33. 33.
    Schwartz S, Wongvipat J, Trigwell CB, Hancox U, Carver BS, Rodrik-Outmezguine V, Will M, Yellen P, de Stanchina E, Baselga J et al (2015) Feedback suppression of PI3Kalpha signaling in PTEN-mutated tumors is relieved by selective inhibition of PI3Kbeta. Cancer Cell 27(1):109–122PubMedCrossRefGoogle Scholar
  34. 34.
    Kulkarni S, Sitaru C, Jakus Z, Anderson KE, Damoulakis G, Davidson K, Hirose M, Juss J, Oxley D, Chessa TA et al (2011) PI3Kbeta plays a critical role in neutrophil activation by immune complexes. Sci Signal 4(168):ra23PubMedCrossRefGoogle Scholar
  35. 35.
    Leverrier Y, Okkenhaug K, Sawyer C, Bilancio A, Vanhaesebroeck B, Ridley AJ (2003) Class I phosphoinositide 3-kinase p110beta is required for apoptotic cell and Fcgamma receptor-mediated phagocytosis by macrophages. J Biol Chem 278(40):38437–38442PubMedCrossRefGoogle Scholar
  36. 36.
    Vanhaesebroeck B, Welham MJ, Kotani K, Stein R, Warne PH, Zvelebil MJ, Higashi K, Volinia S, Downward J, Waterfield MD (1997) P110delta, a novel phosphoinositide 3-kinase in leukocytes. Proc Natl Acad Sci U S A 94(9):4330–4335PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Chantry D, Vojtek A, Kashishian A, Holtzman DA, Wood C, Gray PW, Cooper JA, Hoekstra MF (1997) p110delta, a novel phosphatidylinositol 3-kinase catalytic subunit that associates with p85 and is expressed predominantly in leukocytes. J Biol Chem 272(31):19236–19241PubMedCrossRefGoogle Scholar
  38. 38.
    Eickholt BJ, Ahmed AI, Davies M, Papakonstanti EA, Pearce W, Starkey ML, Bilancio A, Need AC, Smith AJ, Hall SM et al (2007) Control of axonal growth and regeneration of sensory neurons by the p110delta PI 3-kinase. PLoS ONE 2(9):e869PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Sawyer C, Sturge J, Bennett DC, O’Hare MJ, Allen WE, Bain J, Jones GE, Vanhaesebroeck B (2003) Regulation of breast cancer cell chemotaxis by the phosphoinositide 3-kinase p110delta. Cancer Res 63(7):1667–1675PubMedGoogle Scholar
  40. 40.
    Tzenaki N, Andreou M, Stratigi K, Vergetaki A, Makrigiannakis A, Vanhaesebroeck B, Papakonstanti EA (2012) High levels of p110delta PI3K expression in solid tumor cells suppress PTEN activity, generating cellular sensitivity to p110delta inhibitors through PTEN activation. FASEB J 26(6):2498–2508PubMedCrossRefGoogle Scholar
  41. 41.
    Okkenhaug K, Bilancio A, Farjot G, Priddle H, Sancho S, Peskett E, Pearce W, Meek SE, Salpekar A, Waterfield MD et al (2002) Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice. Science (NY) 297(5583):1031–1034Google Scholar
  42. 42.
    Ali K, Bilancio A, Thomas M, Pearce W, Gilfillan AM, Tkaczyk C, Kuehn N, Gray A, Giddings J, Peskett E et al (2004) Essential role for the p110delta phosphoinositide 3-kinase in the allergic response. Nature 431(7011):1007–1011PubMedCrossRefGoogle Scholar
  43. 43.
    Condliffe AM, Davidson K, Anderson KE, Ellson CD, Crabbe T, Okkenhaug K, Vanhaesebroeck B, Turner M, Webb L, Wymann MP et al (2005) Sequential activation of class IB and class IA PI3K is important for the primed respiratory burst of human but not murine neutrophils. Blood 106(4):1432–1440PubMedCrossRefGoogle Scholar
  44. 44.
    Angulo I, Vadas O, Garcon F, Banham-Hall E, Plagnol V, Leahy TR, Baxendale H, Coulter T, Curtis J, Wu C et al (2013) Phosphoinositide 3-kinase delta gene mutation predisposes to respiratory infection and airway damage. Science (NY) 342(6160):866–871CrossRefGoogle Scholar
  45. 45.
    Lucas CL, Kuehn HS, Zhao F, Niemela JE, Deenick EK, Palendira U, Avery DT, Moens L, Cannons JL, Biancalana M et al (2014) Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110delta result in T cell senescence and human immunodeficiency. Nat Immunol 15(1):88–97PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Coulter T, Chandra A, Bacon CM, Babar J, Curtis J, Farmer G, Steele CL, Leahy TR, Doffinger R, Baxendale H et al (2015) The broad clinical spectrum and unexpected features of Activated PI3-kinase delta syndrome; large patient cohort study. Submitted for publicationGoogle Scholar
  47. 47.
    Zhang J, Grubor V, Love CL, Banerjee A, Richards KL, Mieczkowski PA, Dunphy C, Choi W, Au WY, Srivastava G et al (2013) Genetic heterogeneity of diffuse large B-cell lymphoma. Proc Natl Acad Sci U S A 110(4):1398–1403PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Costa C, Ebi H, Martini M, Beausoleil SA, Faber AC, Jakubik CT, Huang A, Wang Y, Nishtala M, Hall B et al (2015) Measurement of PIP3 levels reveals an unexpected role for p110beta in early adaptive responses to p110alpha-specific inhibitors in luminal breast cancer. Cancer Cell 27(1):97–108PubMedCrossRefGoogle Scholar
  49. 49.
    Peng J, Awad A, Sar S, Hamze Komaiha O, Moyano R, Rayal A, Samuel D, Shewan A, Vanhaesebroeck B, Mostov K et al (2015) Phosphoinositide 3-kinase p110delta promotes lumen formation through the enhancement of apico-basal polarity and basal membrane organization. Nat Commun 6:5937PubMedCrossRefGoogle Scholar
  50. 50.
    Tzenaki N, Papakonstanti EA (2013) p110delta PI3 kinase pathway: emerging roles in cancer. Front Oncol 3:40PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Vanhaesebroeck B, Khwaja A (2014) PI3Kdelta inhibition hits a sensitive spot in B cell malignancies. Cancer Cell 25(3):269–271PubMedCrossRefGoogle Scholar
  52. 52.
    Okkenhaug K, Burger JA (2015) PI3K signaling in normal b cells and chronic lymphocytic leukemia (CLL). Curr Top Microbiol ImmunolGoogle Scholar
  53. 53.
    Ali K, Soond DR, Pineiro R, Hagemann T, Pearce W, Lim EL, Bouabe H, Scudamore CL, Hancox T, Maecker H et al (2014) Inactivation of PI(3)K p110delta breaks regulatory T-cell-mediated immune tolerance to cancer. Nature 510(7505):407–411PubMedPubMedCentralGoogle Scholar
  54. 54.
    Hawkins PT, Stephens LR (2015) PI3K signalling in inflammation. Biochim Biophys Acta 1851(6):882–897PubMedCrossRefGoogle Scholar
  55. 55.
    Costa C, Martin-Conte EL, Hirsch E (2011) Phosphoinositide 3-kinase p110gamma in immunity. IUBMB Life 63(9):707–713PubMedGoogle Scholar
  56. 56.
    Ruckle T, Schwarz MK, Rommel C (2006) PI3Kgamma inhibition: towards an ‘aspirin of the 21st century’? Nat Rev Drug Discov 5(11):903–918PubMedCrossRefGoogle Scholar
  57. 57.
    Ghigo A, Morello F, Perino A, Hirsch E (2013) Therapeutic applications of PI3K inhibitors in cardiovascular diseases. Future Med Chem 5(4):479–492PubMedCrossRefGoogle Scholar
  58. 58.
    Schmid MC, Avraamides CJ, Dippold HC, Franco I, Foubert P, Ellies LG, Acevedo LM, Manglicmot JR, Song X, Wrasidlo W et al (2011) Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate myeloid cell PI3kgamma, a single convergent point promoting tumor inflammation and progression. Cancer Cell 19(6):715–727PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Coutre SE, Barrientos JC, Brown JR, de Vos S, Furman RR, Keating MJ, Li D, O’Brien SM, Pagel JM, Poleski MH et al (2015) Management of adverse events associated with idelalisib treatment: expert panel opinion. Leuk Lymphoma 1–8Google Scholar
  60. 60.
    Wilson R, Cahn A, Deans A, McSherry I, Rambaran C, Sousa A, Wilbraham D (2013) Safety, tolerability and pharmacokinetics (PK) of single and repeat nebulised doses of a novel phosphoinositide 3-kinase δ inhibitor (PI3Kδ), GSK2269557, administered to healthy male subjects in a phase I study. ERJ 42(57)Google Scholar
  61. 61.
    Wassef M, Blei F, Adams D, Alomari A, Baselga E, Berenstein A, Burrows P, Frieden IJ, Garzon MC, Lopez-Gutierrez JC et al (2015) Vascular anomalies classification: recommendations from the international society for the study of vascular anomalies. Pediatrics 136(1):e203–e214PubMedCrossRefGoogle Scholar
  62. 62.
    Okkenhaug K (2013) Signaling by the phosphoinositide 3-kinase family in immune cells. Annu Rev Immunol 31:675–704PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Banham-Hall E, Clatworthy MR, Okkenhaug K (2012) The therapeutic potential for PI3K inhibitors in autoimmune rheumatic diseases. Open Rheumatol J 6:245–258PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    So L, Fruman DA (2012) PI3K signalling in B- and T-lymphocytes: new developments and therapeutic advances. Biochem J 442(3):465–481PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Winkler DG, Faia KL, DiNitto JP, Ali JA, White KF, Brophy EE, Pink MM, Proctor JL, Lussier J, Martin CM et al (2013) PI3K-delta and PI3K-gamma inhibition by IPI-145 abrogates immune responses and suppresses activity in autoimmune and inflammatory disease models. Chem Biol 20(11):1364–1374PubMedCrossRefGoogle Scholar
  66. 66.
    Foukas LC, Berenjeno IM, Gray A, Khwaja A, Vanhaesebroeck B (2010) Activity of any class IA PI3K isoform can sustain cell proliferation and survival. Proc Natl Acad Sci U S A 107(25):11381–11386PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Rehman FL, Lord CJ, Ashworth A (2012) The promise of combining inhibition of PI3K and PARP as cancer therapy. Cancer Discov 2(11):982–984PubMedCrossRefGoogle Scholar
  68. 68.
    Vora SR, Juric D, Kim N, Mino-Kenudson M, Huynh T, Costa C, Lockerman EL, Pollack SF, Liu M, Li X et al (2014) CDK 4/6 inhibitors sensitize PIK3CA mutant breast cancer to PI3K inhibitors. Cancer Cell 26(1):136–149PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Bosch A, Li Z, Bergamaschi A, Ellis H, Toska E, Prat A, Tao JJ, Spratt DE, Viola-Villegas NT, Castel P et al (2015) PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor-positive breast cancer. Sci Transl Med 7(283):283ra251CrossRefGoogle Scholar
  70. 70.
    Graupera M, Potente M (2013) Regulation of angiogenesis by PI3K signaling networks. Exp Cell Res 319(9):1348–1355PubMedCrossRefGoogle Scholar
  71. 71.
    Qayum N, Im J, Stratford MR, Bernhard EJ, McKenna WG, Muschel RJ (2012) Modulation of the tumor microvasculature by phosphoinositide-3 kinase inhibition increases doxorubicin delivery in vivo. Clin Cancer Res 18(1):161–169PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Bart Vanhaesebroeck
    • 1
    Email author
  • Maria A. Whitehead
    • 1
  • Roberto Piñeiro
    • 1
  1. 1.UCL Cancer InstituteUniversity College LondonLondonUK

Personalised recommendations