Advertisement

Journal of Molecular Medicine

, Volume 93, Issue 11, pp 1203–1212 | Cite as

Bone metastasis and the metastatic niche

  • Guangwen Ren
  • Mark Esposito
  • Yibin Kang
Review

Abstract

The bone marrow has been long known to host a unique environment amenable to colonization by metastasizing tumor cells. Yet, the underlying molecular interactions within this specialized microenvironment which give rise to the high incidence of bone metastasis in breast and prostate cancer patients have long remained uncharacterized. With the recent description of the bone metastatic “niche,” considerable focus has been placed on understanding how the bone stroma contributes to each step of metastasis. Discoveries within this field have demonstrated that when cancer cells home to the niche in which hematopoietic and mesenchymal stem/progenitor cells normally reside, a bidirectional crosstalk emerges between the tumor cells and the bone metastatic stroma. This communication modulates every step of cancer cell metastasis to the bone, including the initial homing and seeding, formation of micrometastases, outgrowth of macrometastases, and the maintenance of long-term dormancy of disseminated tumor cells in the bone. In clinical practice, targeting the bone metastatic niche is evolving into a promising avenue for the prevention of bone metastatic relapse, therapeutic resistance, and other aspects of cancer progression. Here, we review the current knowledge concerning the role of the bone metastatic niche in bone metastasis.

Keywords

Bone metastasis Metastatic niche Osteoblastic niche Perivascular niche Tumor dormancy Hematopoiesis 

Notes

Acknowledgments

Research in our laboratory on bone metastasis was supported by grants from the Komen for the Cure (KG110464), Department of Defense (BC123187), the Breast Cancer Research Foundation, Brewster Foundation, and the National Institutes of Health (R01CA134519 and R01CA141062) to Y.K, an NIH K99 Award (K99CA188093) to G.R. and a pre-doctoral fellowship from the New Jersey Commission on Cancer Research to M.E.

References

  1. 1.
    Weilbaecher KN, Guise TA, McCauley LK (2011) Cancer to bone: a fatal attraction. Nat Rev Cancer 11:411–425PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Ell B, Kang Y (2012) SnapShot: bone metastasis. Cell 151:690–690, e691 PubMedCrossRefGoogle Scholar
  3. 3.
    Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593PubMedCrossRefGoogle Scholar
  4. 4.
    Pienta KJ, Robertson BA, Coffey DS, Taichman RS (2013) The cancer diaspora: metastasis beyond the seed and soil hypothesis. Clin Cancer Res Off J Am Assoc Cancer Res 19:5849–5855CrossRefGoogle Scholar
  5. 5.
    Suva LJ, Washam C, Nicholas RW, Griffin RJ (2011) Bone metastasis: mechanisms and therapeutic opportunities. Nat Rev Endocrinol 7:208–218PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Sturge J, Caley MP, Waxman J (2011) Bone metastasis in prostate cancer: emerging therapeutic strategies. Nat Rev Clin Oncol 8:357–368PubMedGoogle Scholar
  7. 7.
    Coleman RE (2012) Bone cancer in 2011: prevention and treatment of bone metastases. Nat Rev Clin Oncol 9:76–78CrossRefGoogle Scholar
  8. 8.
    Hage WD, Aboulafia AJ, Aboulafia DM (2000) Incidence, location, and diagnostic evaluation of metastatic bone disease. Orthop Clin N Am 31:515–528, vii CrossRefGoogle Scholar
  9. 9.
    Coleman RE (2006) Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res Off J Am Assoc Cancer Res 12:6243s–6249sCrossRefGoogle Scholar
  10. 10.
    Kaplan RN, Psaila B, Lyden D (2006) Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Rev 25:521–529PubMedCrossRefGoogle Scholar
  11. 11.
    Park SI, Soki FN, McCauley LK (2011) Roles of bone marrow cells in skeletal metastases: no longer bystanders. Cancer Microenviron Off J Int Cancer Microenviron Soc 4:237–246CrossRefGoogle Scholar
  12. 12.
    Shen Y, Nilsson SK (2012) Bone, microenvironment and hematopoiesis. Curr Opin Hematol 19:250–255PubMedCrossRefGoogle Scholar
  13. 13.
    Kingsley LA, Fournier PG, Chirgwin JM, Guise TA (2007) Molecular biology of bone metastasis. Mol Cancer Ther 6:2609–2617PubMedCrossRefGoogle Scholar
  14. 14.
    Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9:285–293PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8:98–101PubMedGoogle Scholar
  16. 16.
    Frenette PS, Pinho S, Lucas D, Scheiermann C (2013) Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu Rev Immunol 31:285–316PubMedCrossRefGoogle Scholar
  17. 17.
    Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505:327–334PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma'ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Karsenty G, Ferron M (2012) The contribution of bone to whole-organism physiology. Nature 481:314–320PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841PubMedCrossRefGoogle Scholar
  21. 21.
    Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846PubMedCrossRefGoogle Scholar
  22. 22.
    Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495:231–235PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481:457–462PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Greenbaum A, Hsu YM, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, Nagasawa T, Link DC (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495:227–230PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Morikawa S, Mabuchi Y, Kubota Y, Nagai Y, Niibe K, Hiratsu E, Suzuki S, Miyauchi-Hara C, Nagoshi N, Sunabori T et al (2009) Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med 206:2483–2496PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Pinho S, Lacombe J, Hanoun M, Mizoguchi T, Bruns I, Kunisaki Y, Frenette PS (2013) PDGFRalpha and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J Exp Med 210:1351–1367PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Park D, Spencer JA, Koh BI, Kobayashi T, Fujisaki J, Clemens TL, Lin CP, Kronenberg HM, Scadden DT (2012) Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 10:259–272PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Hess D, Li L, Martin M, Sakano S, Hill D, Strutt B, Thyssen S, Gray DA, Bhatia M (2003) Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol 21:763–770PubMedCrossRefGoogle Scholar
  29. 29.
    Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705PubMedCrossRefGoogle Scholar
  30. 30.
    Mercier FE, Ragu C, Scadden DT (2012) The bone marrow at the crossroads of blood and immunity. Nat Rev Immunol 12:49–60CrossRefGoogle Scholar
  31. 31.
    Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Swartz MA, Iida N, Roberts EW, Sangaletti S, Wong MH, Yull FE, Coussens LM, DeClerck YA (2012) Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res 72:2473–2480PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Chantrain CF, Feron O, Marbaix E, DeClerck YA (2008) Bone marrow microenvironment and tumor progression. Cancer Microenviron Off J Int Cancer Microenviron Soc 1:23–35CrossRefGoogle Scholar
  34. 34.
    Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401PubMedCrossRefGoogle Scholar
  35. 35.
    Ostman A, Augsten M (2009) Cancer-associated fibroblasts and tumor growth—bystanders turning into key players. Curr Opin Genet Dev 19:67–73PubMedCrossRefGoogle Scholar
  36. 36.
    Shimoda M, Mellody KT, Orimo A (2010) Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Semin Cell Dev Biol 21:19–25PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Direkze NC, Hodivala-Dilke K, Jeffery R, Hunt T, Poulsom R, Oukrif D, Alison MR, Wright NA (2004) Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res 64:8492–8495PubMedCrossRefGoogle Scholar
  38. 38.
    Quante M, Tu SP, Tomita H, Gonda T, Wang SS, Takashi S, Baik GH, Shibata W, Diprete B, Betz KS et al (2011) Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 19:257–272PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Mishra PJ, Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, Ganesan S, Glod JW, Banerjee D (2008) Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 68:4331–4339PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Lecomte J, Masset A, Blacher S, Maertens L, Gothot A, Delgaudine M, Bruyere F, Carnet O, Paupert J, Illemann M et al (2012) Bone marrow-derived myofibroblasts are the providers of pro-invasive matrix metalloproteinase 13 in primary tumor. Neoplasia 14:943–951PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Casimiro S, Guise TA, Chirgwin J (2009) The critical role of the bone microenvironment in cancer metastases. Mol Cell Endocrinol 310:71–81PubMedCrossRefGoogle Scholar
  42. 42.
    Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    McAllister SS, Gifford AM, Greiner AL, Kelleher SP, Saelzler MP, Ince TA, Reinhardt F, Harris LN, Hylander BL, Repasky EA et al (2008) Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell 133:994–1005PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J, Kim JK, Patel LR, Ying C, Ziegler AM et al (2011) Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Investig 121:1298–1312PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Kuhn NZ, Tuan RS (2010) Regulation of stemness and stem cell niche of mesenchymal stem cells: implications in tumorigenesis and metastasis. J Cell Physiol 222:268–277PubMedCrossRefGoogle Scholar
  46. 46.
    Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA (2008) Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 322:1861–1865PubMedCrossRefGoogle Scholar
  47. 47.
    Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H, Almeida D, Koller A, Hajjar KA, Stainier DY et al (2013) The perivascular niche regulates breast tumour dormancy. Nat Cell Biol 15:807–817PubMedCrossRefGoogle Scholar
  48. 48.
    Zheng H, Kang Y (2014) Multilayer control of the EMT master regulators. Oncogene 33:1755–1763PubMedCrossRefGoogle Scholar
  49. 49.
    Shuman Moss LA, Jensen-Taubman S, Stetler-Stevenson WG (2012) Matrix metalloproteinases: changing roles in tumor progression and metastasis. Am J Pathol 181:1895–1899PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Zhang XH, Jin X, Malladi S, Zou Y, Wen YH, Brogi E, Smid M, Foekens JA, Massague J (2013) Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell 154:1060–1073PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Wan L, Pantel K, Kang Y (2013) Tumor metastasis: moving new biological insights into the clinic. Nat Med 19:1450–1464PubMedCrossRefGoogle Scholar
  52. 52.
    Pitt LA, Tikhonova AN, Hu H, Trimarchi T, King B, Gong Y, Sanchez-Martin M, Tsirigos A, Littman DR, Ferrando AA et al (2015) CXCL12-producing vascular endothelial niches control acute T cell leukemia maintenance. Cancer Cell 27:755–768PubMedCrossRefGoogle Scholar
  53. 53.
    Cojoc M, Peitzsch C, Trautmann F, Polishchuk L, Telegeev GD, Dubrovska A (2013) Emerging targets in cancer management: role of the CXCL12/CXCR4 axis. Onco Targets Ther 6:1347–1361PubMedCentralPubMedGoogle Scholar
  54. 54.
    Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56PubMedCrossRefGoogle Scholar
  55. 55.
    Teicher BA, Fricker SP (2010) CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res Off J Am Assoc Cancer Res 16:2927–2931CrossRefGoogle Scholar
  56. 56.
    Duda DG, Kozin SV, Kirkpatrick ND, Xu L, Fukumura D, Jain RK (2011) CXCL12 (SDF1alpha)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies? Clin Cancer Res Off J Am Assoc Cancer Res 17:2074–2080CrossRefGoogle Scholar
  57. 57.
    Lu X, Kang Y (2009) Chemokine (C-C motif) ligand 2 engages CCR2+ stromal cells of monocytic origin to promote breast cancer metastasis to lung and bone. J Biol Chem 284:29087–29096PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Nakamura ES, Koizumi K, Kobayashi M, Saitoh Y, Arita Y, Nakayama T, Sakurai H, Yoshie O, Saiki I (2006) RANKL-induced CCL22/macrophage-derived chemokine produced from osteoclasts potentially promotes the bone metastasis of lung cancer expressing its receptor CCR4. Clin Exp Metastasis 23:9–18PubMedCrossRefGoogle Scholar
  59. 59.
    Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, Ponomaryov T, Taichman RS, Arenzana-Seisdedos F, Fujii N et al (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3:687–694PubMedCrossRefGoogle Scholar
  60. 60.
    Schroeder MA, DiPersio JF (2012) Mobilization of hematopoietic stem and leukemia cells. J Leukoc Biol 91:47–57PubMedCrossRefGoogle Scholar
  61. 61.
    Kelly T, Suva LJ, Huang Y, Macleod V, Miao HQ, Walker RC, Sanderson RD (2005) Expression of heparanase by primary breast tumors promotes bone resorption in the absence of detectable bone metastases. Cancer Res 65:5778–5784PubMedCrossRefGoogle Scholar
  62. 62.
    Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, Garcia-Santos G, Ghajar C et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18:883–891PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Bidwell BN, Slaney CY, Withana NP, Forster S, Cao Y, Loi S, Andrews D, Mikeska T, Mangan NE, Samarajiwa SA et al (2012) Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat Med 18:1224–1231PubMedCrossRefGoogle Scholar
  64. 64.
    Eyles J, Puaux AL, Wang X, Toh B, Prakash C, Hong M, Tan TG, Zheng L, Ong LC, Jin Y et al (2010) Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J Clin Investig 120:2030–2039PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Schneider JG, Amend SR, Weilbaecher KN (2011) Integrins and bone metastasis: integrating tumor cell and stromal cell interactions. Bone 48:54–65PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Lu X, Mu E, Wei Y, Riethdorf S, Yang Q, Yuan M, Yan J, Hua Y, Tiede BJ, Lu X et al (2011) VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors. Cancer Cell 20:701–714PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Zhao Y, Bachelier R, Treilleux I, Pujuguet P, Peyruchaud O, Baron R, Clement-Lacroix P, Clezardin P (2007) Tumor alphavbeta3 integrin is a therapeutic target for breast cancer bone metastases. Cancer Res 67:5821–5830PubMedCrossRefGoogle Scholar
  68. 68.
    Shiozawa Y, Havens AM, Jung Y, Ziegler AM, Pedersen EA, Wang J, Wang J, Lu G, Roodman GD, Loberg RD et al (2008) Annexin II/annexin II receptor axis regulates adhesion, migration, homing, and growth of prostate cancer. J Cell Biochem 105:370–380PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Wang H, Yu C, Gao X, Welte T, Muscarella AM, Tian L, Zhao H, Zhao Z, Du S, Tao J et al (2015) The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell 27:193–210PubMedCrossRefGoogle Scholar
  70. 70.
    Braun S, Vogl FD, Naume B, Janni W, Osborne MP, Coombes RC, Schlimok G, Diel IJ, Gerber B, Gebauer G et al (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353:793–802PubMedCrossRefGoogle Scholar
  71. 71.
    Sethi N, Dai X, Winter CG, Kang Y (2011) Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19:192–205PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Esposito M, Kang Y (2014) Targeting tumor-stromal interactions in bone metastasis. Pharmacol Ther 141:222–233PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Erler JT, Bennewith KL, Nicolau M, Dornhofer N, Kong C, Le QT, Chi JT, Jeffrey SS, Giaccia AJ (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440:1222–1226PubMedCrossRefGoogle Scholar
  74. 74.
    Cox TR, Rumney RM, Schoof EM, Perryman L, Hoye AM, Agrawal A, Bird D, Latif NA, Forrest H, Evans HR et al (2015) The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature 522:106–110PubMedCrossRefGoogle Scholar
  75. 75.
    Ell B, Mercatali L, Ibrahim T, Campbell N, Schwarzenbach H, Pantel K, Amadori D, Kang Y (2013) Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell 24:542–556PubMedCrossRefGoogle Scholar
  76. 76.
    Hofbauer LC, Rachner TD, Coleman RE, Jakob F (2014) Endocrine aspects of bone metastases. Lancet Diabetes Endocrinol 2:500–512PubMedCrossRefGoogle Scholar
  77. 77.
    Ottewell PD, Wang N, Meek J, Fowles CA, Croucher PI, Eaton CL, Holen I (2014) Castration-induced bone loss triggers growth of disseminated prostate cancer cells in bone. Endocr Relat Cancer 21:769–781PubMedCrossRefGoogle Scholar
  78. 78.
    Ottewell PD, Wang N, Brown HK, Fowles CA, Croucher PI, Eaton CL, Holen I (2015) OPG-Fc inhibits ovariectomy-induced growth of disseminated breast cancer cells in bone. Int J Cancer J Int Cancer 137:968–977CrossRefGoogle Scholar
  79. 79.
    Shahinian VB, Kuo YF, Freeman JL, Goodwin JS (2005) Risk of fracture after androgen deprivation for prostate cancer. N Engl J Med 352:154–164PubMedCrossRefGoogle Scholar
  80. 80.
    Clarke BL, Khosla S (2009) Androgens and bone. Steroids 74:296–305PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Smith EP, Specker B, Korach KS (2010) Recent experimental and clinical findings in the skeleton associated with loss of estrogen hormone or estrogen receptor activity. J Steroid Biochem Mol Biol 118:264–272PubMedCrossRefGoogle Scholar
  82. 82.
    Nakamura T, Imai Y, Matsumoto T, Sato S, Takeuchi K, Igarashi K, Harada Y, Azuma Y, Krust A, Yamamoto Y et al (2007) Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 130:811–823PubMedCrossRefGoogle Scholar
  83. 83.
    Takahashi N, Udagawa N, Suda T (2014) Vitamin D endocrine system and osteoclasts. BoneKEy Rep 3:495PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Morrissey C, Roudier MP, Dowell A, True LD, Ketchanji M, Welty C, Corey E, Lange PH, Higano CS, Vessella RL (2013) Effects of androgen deprivation therapy and bisphosphonate treatment on bone in patients with metastatic castration-resistant prostate cancer: results from the University of Washington Rapid Autopsy Series. J Bone Miner Res Off J Am Soc Bone Miner Res 28:333–340CrossRefGoogle Scholar
  85. 85.
    Fizazi K, Carducci M, Smith M, Damiao R, Brown J, Karsh L, Milecki P, Shore N, Rader M, Wang H et al (2011) Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet 377:813–822PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Hall CL, Bafico A, Dai J, Aaronson SA, Keller ET (2005) Prostate cancer cells promote osteoblastic bone metastases through Wnts. Cancer Res 65:7554–7560PubMedGoogle Scholar
  87. 87.
    Patel LR, Camacho DF, Shiozawa Y, Pienta KJ, Taichman RS (2011) Mechanisms of cancer cell metastasis to the bone: a multistep process. Future Oncol 7:1285–1297PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Clement-Demange L, Clezardin P (2015) Emerging therapies in bone metastasis. Curr Opin Pharmacol 22:79–86PubMedCrossRefGoogle Scholar
  89. 89.
    Sosa MS, Bragado P, Aguirre-Ghiso JA (2014) Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer 14:611–622PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Kang Y, Pantel K (2013) Tumor cell dissemination: emerging biological insights from animal models and cancer patients. Cancer Cell 23:573–581PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768PubMedCrossRefGoogle Scholar
  92. 92.
    Anthony BA, Link DC (2014) Regulation of hematopoietic stem cells by bone marrow stromal cells. Trends Immunol 35:32–37PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Janni W, Vogl FD, Wiedswang G, Synnestvedt M, Fehm T, Juckstock J, Borgen E, Rack B, Braun S, Sommer H et al (2011) Persistence of disseminated tumor cells in the bone marrow of breast cancer patients predicts increased risk for relapse--a European pooled analysis. Clin Cancer Res Off J Am Assoc Cancer Res 17:2967–2976CrossRefGoogle Scholar
  94. 94.
    Grobe A, Blessmann M, Hanken H, Friedrich RE, Schon G, Wikner J, Effenberger KE, Kluwe L, Heiland M, Pantel K et al (2014) Prognostic relevance of circulating tumor cells in blood and disseminated tumor cells in bone marrow of patients with squamous cell carcinoma of the oral cavity. Clin Cancer Res Off J Am Assoc Cancer Res 20:425–433CrossRefGoogle Scholar
  95. 95.
    Vashist YK, Effenberger KE, Vettorazzi E, Riethdorf S, Yekebas EF, Izbicki JR, Pantel K (2012) Disseminated tumor cells in bone marrow and the natural course of resected esophageal cancer. Ann Surg 255:1105–1112PubMedCrossRefGoogle Scholar
  96. 96.
    Bragado P, Estrada Y, Parikh F, Krause S, Capobianco C, Farina HG, Schewe DM, Aguirre-Ghiso JA (2013) TGF-beta2 dictates disseminated tumour cell fate in target organs through TGF-beta-RIII and p38alpha/beta signalling. Nat Cell Biol 15:1351–1361PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Kobayashi A, Okuda H, Xing F, Pandey PR, Watabe M, Hirota S, Pai SK, Liu W, Fukuda K, Chambers C et al (2011) Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J Exp Med 208:2641–2655PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Taichman RS, Patel LR, Bedenis R, Wang J, Weidner S, Schumann T, Yumoto K, Berry JE, Shiozawa Y, Pienta KJ (2013) GAS6 receptor status is associated with dormancy and bone metastatic tumor formation. PLoS One 8:e61873PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Archin NM, Liberty AL, Kashuba AD, Choudhary SK, Kuruc JD, Crooks AM, Parker DC, Anderson EM, Kearney MF, Strain MC et al (2012) Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487:482–485PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Saito Y, Uchida N, Tanaka S, Suzuki N, Tomizawa-Murasawa M, Sone A, Najima Y, Takagi S, Aoki Y, Wake A et al (2010) Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nat Biotechnol 28:275–280PubMedGoogle Scholar
  101. 101.
    Lucas D, Scheiermann C, Chow A, Kunisaki Y, Bruns I, Barrick C, Tessarollo L, Frenette PS (2013) Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nat Med 19:695–703PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Shao L, Luo Y, Zhou D (2014) Hematopoietic stem cell injury induced by ionizing radiation. Antioxid Redox Signal 20:1447–1462PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Duan CW, Shi J, Chen J, Wang B, Yu YH, Qin X, Zhou XC, Cai YJ, Li ZQ, Zhang F et al (2014) Leukemia propagating cells rebuild an evolving niche in response to therapy. Cancer Cell 25:778–793PubMedCrossRefGoogle Scholar
  104. 104.
    Boyerinas B, Zafrir M, Yesilkanal AE, Price TT, Hyjek EM, Sipkins DA (2013) Adhesion to osteopontin in the bone marrow niche regulates lymphoblastic leukemia cell dormancy. Blood 121:4821–4831PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Domanska UM, Kruizinga RC, Nagengast WB, Timmer-Bosscha H, Huls G, de Vries EG, Walenkamp AM (2013) A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur J Cancer 49:219–230PubMedCrossRefGoogle Scholar
  106. 106.
    Sison EA, McIntyre E, Magoon D, Brown P (2013) Dynamic chemotherapy-induced upregulation of CXCR4 expression: a mechanism of therapeutic resistance in pediatric AML. Mol Cancer Res MCR 11:1004–1016PubMedCrossRefGoogle Scholar
  107. 107.
    Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G (2008) Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8:59–73PubMedCrossRefGoogle Scholar
  108. 108.
    Park SI, Liao J, Berry JE, Li X, Koh AJ, Michalski ME, Eber MR, Soki FN, Sadler D, Sud S et al (2012) Cyclophosphamide creates a receptive microenvironment for prostate cancer skeletal metastasis. Cancer Res 72:2522–2532PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Jankowski K, Kucia M, Wysoczynski M, Reca R, Zhao D, Trzyna E, Trent J, Peiper S, Zembala M, Ratajczak J et al (2003) Both hepatocyte growth factor (HGF) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only HGF enhances their resistance to radiochemotherapy. Cancer Res 63:7926–7935PubMedGoogle Scholar
  110. 110.
    Schneider G, Bryndza E, Abdel-Latif A, Ratajczak J, Maj M, Tarnowski M, Klyachkin YM, Houghton P, Morris AJ, Vater A et al (2013) Bioactive lipids S1P and C1P are prometastatic factors in human rhabdomyosarcoma, and their tissue levels increase in response to radio/chemotherapy. Mol Cancer Res MCR 11:793–807PubMedCrossRefGoogle Scholar
  111. 111.
    Mendez-Ferrer S, Lucas D, Battista M, Frenette PS (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452:442–447PubMedCrossRefGoogle Scholar
  112. 112.
    Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, Frenette PS (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124:407–421PubMedCrossRefGoogle Scholar
  113. 113.
    Campbell JP, Karolak MR, Ma Y, Perrien DS, Masood-Campbell SK, Penner NL, Munoz SA, Zijlstra A, Yang X, Sterling JA et al (2012) Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice. PLoS Biol 10:e1001363PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Molecular BiologyPrinceton UniversityPrincetonUSA

Personalised recommendations