Advertisement

Journal of Molecular Medicine

, Volume 93, Issue 10, pp 1061–1073 | Cite as

mTOR in health and in sickness

  • Dritan Liko
  • Michael N. Hall
Molecules in Medicine

Abstract

Target of rapamycin (TOR) is a highly conserved protein kinase that plays a key role in mediating cell growth and homeostasis. It is activated by nutrients, growth factors, and cellular energy levels to control a number of anabolic and catabolic processes. It is a validated drug target implicated in a variety of diseases. In this review, we describe the molecular mode of action of TOR in the context of cellular and organismal physiology. We focus on mammalian TOR (mTOR) signaling in cancer and neurological disease and discuss usage of TOR inhibitors in the clinic.

Keywords

mTOR Health TOR mTORC1 mTORC2 mTOR inhibitors Rapamycin Rapalogs Disease 

Notes

Acknowledgments

The authors acknowledge support from the Swiss National Science Foundation and the NCCR RNA and Disease Grant.

References

  1. 1.
    Heitman J, Movva NR, Hiestand PC, Hall MN (1991) FK 506-binding protein proline rotamase is a target for the immunosuppressive agent FK 506 in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 88(5):1948–1952PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Helliwell SB, Wagner P, Kunz J, Deuter-Reinhard M, Henriquez R, Hall MN (1994) TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol Biol Cell 5(1):105–118PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva NR, Hall MN (1993) Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 73(3):585–596PubMedCrossRefGoogle Scholar
  4. 4.
    Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL (1994) A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369(6483):756–758PubMedCrossRefGoogle Scholar
  5. 5.
    Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH (1994) RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78(1):35–43PubMedCrossRefGoogle Scholar
  6. 6.
    Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, Hall MN (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6(11):1122–1128PubMedCrossRefGoogle Scholar
  7. 7.
    Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10(3):457–468PubMedCrossRefGoogle Scholar
  8. 8.
    Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14(14):1296–1302PubMedCrossRefGoogle Scholar
  9. 9.
    Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, Markhard AL, Sabatini DM (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22(2):159–168PubMedCrossRefGoogle Scholar
  10. 10.
    Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, Carr SA, Sabatini DM (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25(6):903–915PubMedCrossRefGoogle Scholar
  11. 11.
    Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9(3):316–323PubMedCrossRefGoogle Scholar
  12. 12.
    Malla R, Wang Y, Chan WK, Tiwari AK, Faridi JS (2015) Genetic ablation of PRAS40 improves glucose homeostasis via linking the AKT and mTOR pathways. Biochem Pharmacol 96(1):65–75PubMedCrossRefGoogle Scholar
  13. 13.
    Pearce LR, Huang X, Boudeau J, Pawlowski R, Wullschleger S, Deak M, Ibrahim AF, Gourlay R, Magnuson MA, Alessi DR (2007) Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J 405(3):513–522PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, Gray NS, Sabatini DM (2009) DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137(5):873–886PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Lempiainen H, Halazonetis TD (2009) Emerging common themes in regulation of PIKKs and PI3Ks. EMBO J 28(20):3067–3073PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Sauer E, Imseng S, Maier T, Hall MN (2013) Conserved sequence motifs and the structure of the mTOR kinase domain. Biochem Soc Trans 41(4):889–895PubMedCrossRefGoogle Scholar
  17. 17.
    Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ, Pavletich NP (2013) mTOR kinase structure, mechanism and regulation. Nature 497(7448):217–223PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Choi J, Chen J, Schreiber SL, Clardy J (1996) Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 273(5272):239–242PubMedCrossRefGoogle Scholar
  19. 19.
    Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, Stevens DM, Davis JG, Salmon AB, Richardson A, Ahima RS et al (2012) Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335(6076):1638–1643PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Schreiber KH, Ortiz D, Academia EC, Anies AC, Liao CY, Kennedy BK (2015) Rapamycin-mediated mTORC2 inhibition is determined by the relative expression of FK506-binding proteins. Aging Cell 14(2):265–273PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Gaubitz C, Oliveira TM, Prouteau M, Leitner A, Karuppasamy M, Konstantinidou G, Rispal D, Eltschinger S, Robinson GC, Thore S et al (2015) Molecular basis of the rapamycin insensitivity of target of rapamycin complex 2. Mol Cell 58(6):977–988PubMedCrossRefGoogle Scholar
  22. 22.
    Yip CK, Murata K, Walz T, Sabatini DM, Kang SA (2010) Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol Cell 38(5):768–774PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Jain A, Arauz E, Aggarwal V, Ikon N, Chen J, Ha T (2014) Stoichiometry and assembly of mTOR complexes revealed by single-molecule pulldown. Proc Natl Acad Sci U S A 111(50):17833–17838PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Kim SG, Hoffman GR, Poulogiannis G, Buel GR, Jang YJ, Lee KW, Kim BY, Erikson RL, Cantley LC, Choo AY et al (2013) Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol Cell 49(1):172–185PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Dibble CC, Manning BD (2013) Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol 15(6):555–564PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Jewell JL, Guan KL (2013) Nutrient signaling to mTOR and cell growth. Trends Biochem Sci 38(5):233–242PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Loewith R, Hall MN (2011) Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189(4):1177–1201PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10(5):307–318PubMedCrossRefGoogle Scholar
  30. 30.
    Shimobayashi M, Hall MN (2014) Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 15(3):155–162PubMedCrossRefGoogle Scholar
  31. 31.
    Dibble CC, Elis W, Menon S, Qin W, Klekota J, Asara JM, Finan PM, Kwiatkowski DJ, Murphy LO, Manning BD (2012) TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 47(4):535–546PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Inoki K, Li Y, Zhu T, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4(9):648–657PubMedCrossRefGoogle Scholar
  33. 33.
    Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC (2002) Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10(1):151–162PubMedCrossRefGoogle Scholar
  34. 34.
    Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J (2005) Rheb binds and regulates the mTOR kinase. Curr Biol 15(8):702–713PubMedCrossRefGoogle Scholar
  35. 35.
    Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320(5882):1496–1501PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Bar-Peled L, Sabatini DM (2014) Regulation of mTORC1 by amino acids. Trends Cell Biol 24(7):400–406PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Efeyan A, Comb WC, Sabatini DM (2015) Nutrient-sensing mechanisms and pathways. Nature 517(7534):302–310PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM (2013) A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340(6136):1100–1106PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM (2012) Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150(6):1196–1208PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141(2):290–303PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, Aebersold R, Sonenberg N (1999) Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev 13(11):1422–1437PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Gingras AC, Kennedy SG, O'Leary MA, Sonenberg N, Hay N (1998) 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev 12(4):502–513PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A, Shi EY, Stumpf CR, Christensen C, Bonham MJ et al (2012) The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485(7396):55–61PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Larsson O, Morita M, Topisirovic I, Alain T, Blouin MJ, Pollak M, Sonenberg N (2012) Distinct perturbation of the translatome by the antidiabetic drug metformin. Proc Natl Acad Sci U S A 109(23):8977–8982PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM (2012) A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485(7396):109–113PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Damgaard CK, Lykke-Andersen J (2011) Translational coregulation of 5'TOP mRNAs by TIA-1 and TIAR. Genes Dev 25(19):2057–2068PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Miloslavski R, Cohen E, Avraham A, Iluz Y, Hayouka Z, Kasir J, Mudhasani R, Jones SN, Cybulski N, Ruegg MA et al (2014) Oxygen sufficiency controls TOP mRNA translation via the TSC-Rheb-mTOR pathway in a 4E-BP-independent manner. J Mol Cell Biol 6(3):255–266PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Patursky-Polischuk I, Kasir J, Miloslavski R, Hayouka Z, Hausner-Hanochi M, Stolovich-Rain M, Tsukerman P, Biton M, Mudhasani R, Jones SN et al (2014) Reassessment of the role of TSC, mTORC1 and microRNAs in amino acids-meditated translational control of TOP mRNAs. PLoS One 9(10), e109410. doi: 10.1371/journal.pone.0109410 PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Holz MK, Ballif BA, Gygi SP, Blenis J (2005) mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123(4):569–580PubMedCrossRefGoogle Scholar
  50. 50.
    Raught B, Peiretti F, Gingras AC, Livingstone M, Shahbazian D, Mayeur GL, Polakiewicz RD, Sonenberg N, Hershey JW (2004) Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J 23(8):1761–1769PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Dorrello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE, Pagano M (2006) S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 314(5798):467–471PubMedCrossRefGoogle Scholar
  52. 52.
    Wang X, Li W, Williams M, Terada N, Alessi DR, Proud CG (2001) Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J 20(16):4370–4379PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Richardson CJ, Broenstrup M, Fingar DC, Julich K, Ballif BA, Gygi S, Blenis J (2004) SKAR is a specific target of S6 kinase 1 in cell growth control. Curr Biol 14(17):1540–1549PubMedCrossRefGoogle Scholar
  54. 54.
    Wilson KF, Wu WJ, Cerione RA (2000) Cdc42 stimulates RNA splicing via the S6 kinase and a novel S6 kinase target, the nuclear cap-binding complex. J Biol Chem 275(48):37307–37310PubMedCrossRefGoogle Scholar
  55. 55.
    Shah OJ, Wang Z, Hunter T (2004) Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 14(18):1650–1656PubMedCrossRefGoogle Scholar
  56. 56.
    Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H, Barnett J, Leslie NR, Cheng S, Shepherd PR et al (2004) The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 166(2):213–223PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, Fumagalli S, Allegrini PR, Kozma SC, Auwerx J et al (2004) Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431(7005):200–205PubMedCrossRefGoogle Scholar
  58. 58.
    Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D, Peterson TR, Choi Y, Gray NS, Yaffe MB et al (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332(6035):1317–1322PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villen J, Kubica N, Hoffman GR, Cantley LC, Gygi SP et al (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332(6035):1322–1326PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Zinzalla V, Stracka D, Oppliger W, Hall MN (2011) Activation of mTORC2 by association with the ribosome. Cell 144(5):757–768PubMedCrossRefGoogle Scholar
  61. 61.
    Albert V, Hall MN (2014) mTOR signaling in cellular and organismal energetics. Curr Opin Cell Biol 33C:55–66Google Scholar
  62. 62.
    Bentzinger CF, Romanino K, Cloetta D, Lin S, Mascarenhas JB, Oliveri F, Xia J, Casanova E, Costa CF, Brink M et al (2008) Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab 8(5):411–424PubMedCrossRefGoogle Scholar
  63. 63.
    Umemura A, Park EJ, Taniguchi K, Lee JH, Shalapour S, Valasek MA, Aghajan M, Nakagawa H, Seki E, Hall MN et al (2014) Liver damage, inflammation, and enhanced tumorigenesis after persistent mTORC1 inhibition. Cell Metab 20(1):133–144PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Carr TD, Feehan RP, Hall MN, Ruegg MA, Shantz LM (2015) Conditional disruption of rictor demonstrates a direct requirement for mTORC2 in skin tumor development and continued growth of established tumors. Carcinogenesis 36(4):487–497PubMedCrossRefGoogle Scholar
  65. 65.
    Guertin DA, Stevens DM, Saitoh M, Kinkel S, Crosby K, Sheen JH, Mullholland DJ, Magnuson MA, Wu H, Sabatini DM (2009) mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell 15(2):148–159PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Cornu M, Albert V, Hall MN (2013) mTOR in aging, metabolism, and cancer. Curr Opin Genet Dev 23(1):53–62PubMedCrossRefGoogle Scholar
  67. 67.
    Goorden SM, van Woerden GM, van der Weerd L, Cheadle JP, Elgersma Y (2007) Cognitive deficits in Tsc1+/− mice in the absence of cerebral lesions and seizures. Ann Neurol 62(6):648–655PubMedCrossRefGoogle Scholar
  68. 68.
    Ehninger D, Han S, Shilyansky C, Zhou Y, Li W, Kwiatkowski DJ, Ramesh V, Silva AJ (2008) Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat Med 14(8):843–848PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Lipton JO, Sahin M (2014) The neurology of mTOR. Neuron 84(2):275–291PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    An WL, Cowburn RF, Li L, Braak H, Alafuzoff I, Iqbal K, Iqbal IG, Winblad B, Pei JJ (2003) Up-regulation of phosphorylated/activated p70 S6 kinase and its relationship to neurofibrillary pathology in Alzheimer's disease. Am J Pathol 163(2):591–607PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Griffin RJ, Moloney A, Kelliher M, Johnston JA, Ravid R, Dockery P, O'Connor R, O'Neill C (2005) Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer's disease pathology. J Neurochem 93(1):105–117PubMedCrossRefGoogle Scholar
  72. 72.
    Davies J, Zachariades E, Rogers-Broadway KR, Karteris E (2014) Elucidating the role of DEPTOR in Alzheimer's disease. Int J Mol Med 34(5):1195–1200PubMedCentralPubMedGoogle Scholar
  73. 73.
    Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O'Kane CJ et al (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36(6):585–595PubMedCrossRefGoogle Scholar
  74. 74.
    Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, Richardson A, Strong R, Galvan V (2010) Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer's disease. PLoS One 5(4), e9979. doi: 10.1371/journal.pone.0009979 PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Carter MT, Scherer SW (2013) Autism spectrum disorder in the genetics clinic: a review. Clin Genet 83(5):399–407PubMedCrossRefGoogle Scholar
  76. 76.
    Crino PB, Nathanson KL, Henske EP (2006) The tuberous sclerosis complex. N Engl J Med 355(13):1345–1356PubMedCrossRefGoogle Scholar
  77. 77.
    Bhattacharya A, Kaphzan H, Alvarez-Dieppa AC, Murphy JP, Pierre P, Klann E (2012) Genetic removal of p70 S6 kinase 1 corrects molecular, synaptic, and behavioral phenotypes in fragile X syndrome mice. Neuron 76(2):325–337PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Bartley CM, O'Keefe RA, Bordey A (2014) FMRP S499 is phosphorylated independent of mTORC1-S6K1 activity. PLoS One 9(5), e96956. doi: 10.1371/journal.pone.0096956 PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Narayanan U, Nalavadi V, Nakamoto M, Thomas G, Ceman S, Bassell GJ, Warren ST (2008) S6K1 phosphorylates and regulates fragile X mental retardation protein (FMRP) with the neuronal protein synthesis-dependent mammalian target of rapamycin (mTOR) signaling cascade. J Biol Chem 283(27):18478–18482PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Gkogkas CG, Khoutorsky A, Cao R, Jafarnejad SM, Prager-Khoutorsky M, Giannakas N, Kaminari A, Fragkouli A, Nader K, Price TJ et al (2014) Pharmacogenetic inhibition of eIF4E-dependent Mmp9 mRNA translation reverses fragile X syndrome-like phenotypes. Cell Rep 9(5):1742–1755PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Santini E, Huynh TN, MacAskill AF, Carter AG, Pierre P, Ruggero D, Kaphzan H, Klann E (2013) Exaggerated translation causes synaptic and behavioural aberrations associated with autism. Nature 493(7432):411–415PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Tang G, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G, Sosunov A, Sonders MS, Kanter E, Castagna C, Yamamoto A et al (2014) Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83(5):1131–1143PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Zhang Y, Nicholatos J, Dreier JR, Ricoult SJ, Widenmaier SB, Hotamisligil GS, Kwiatkowski DJ, Manning BD (2014) Coordinated regulation of protein synthesis and degradation by mTORC1. Nature 513(7518):440–443PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Grabiner BC, Nardi V, Birsoy K, Possemato R, Shen K, Sinha S, Jordan A, Beck AH, Sabatini DM (2014) A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov 4(5):554–563PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Hardt M, Chantaravisoot N, Tamanoi F (2011) Activating mutations of TOR (target of rapamycin). Genes Cells 16(2):141–151PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Kakumoto K, Ikeda J, Okada M, Morii E, Oneyama C (2015) mLST8 promotes mTOR-mediated tumor progression. PLoS One 10(4), e0119015. doi: 10.1371/journal.pone.0119015 PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Oneyama C, Kito Y, Asai R, Ikeda J, Yoshida T, Okuzaki D, Kokuda R, Kakumoto K, Takayama K, Inoue S et al (2013) MiR-424/503-mediated Rictor upregulation promotes tumor progression. PLoS One 8(11), e80300. doi: 10.1371/journal.pone.0080300 PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Das F, Dey N, Venkatesan B, Kasinath BS, Ghosh-Choudhury N, Choudhury GG (2011) High glucose upregulation of early-onset Parkinson's disease protein DJ-1 integrates the PRAS40/TORC1 axis to mesangial cell hypertrophy. Cell Signal 23(8):1311–1319PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Hao J, Li F, Liu W, Liu Q, Liu S, Li H, Duan H (2014) Phosphorylation of PRAS40-Thr246 involved in renal lipid accumulation of diabetes. J Cell Physiol 229(8):1069–1077PubMedCrossRefGoogle Scholar
  90. 90.
    Malla R, Ashby CR Jr, Narayanan NK, Narayanan B, Faridi JS, Tiwari AK (2015) Proline-rich AKT substrate of 40-kDa (PRAS40) in the pathophysiology of cancer. Biochem Biophys Res Commun 463(3):161–166PubMedCrossRefGoogle Scholar
  91. 91.
    Vincent EE, Elder DJ, Thomas EC, Phillips L, Morgan C, Pawade J, Sohail M, May MT, Hetzel MR, Tavare JM (2011) Akt phosphorylation on Thr308 but not on Ser473 correlates with Akt protein kinase activity in human non-small cell lung cancer. Br J Cancer 104(11):1755–1761PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Yuan K, Wu H, Wang Y, Chen H, Jiao M, Fu R (2015) Phospho-PRAS40 predicts trastuzumab response in patients with HER2-positive metastatic breast cancer. Oncol Lett 9(2):785–789PubMedCentralPubMedGoogle Scholar
  93. 93.
    Johnstone CN, Castellvi-Bel S, Chang LM, Sung RK, Bowser MJ, Pique JM, Castells A, Rustgi AK (2005) PRR5 encodes a conserved proline-rich protein predominant in kidney: analysis of genomic organization, expression, and mutation status in breast and colorectal carcinomas. Genomics 85(3):338–351PubMedCrossRefGoogle Scholar
  94. 94.
    Wang Z, Zhong J, Inuzuka H, Gao D, Shaik S, Sarkar FH, Wei W (2012) An evolving role for DEPTOR in tumor development and progression. Neoplasia 14(5):368–375PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, Bignell G, Warren W, Aminoff M, Hoglund P et al (1998) A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391(6663):184–187PubMedCrossRefGoogle Scholar
  96. 96.
    Salmena L, Carracedo A, Pandolfi PP (2008) Tenets of PTEN tumor suppression. Cell 133(3):403–414PubMedCrossRefGoogle Scholar
  97. 97.
    Squarize CH, Castilho RM, Gutkind JS (2008) Chemoprevention and treatment of experimental Cowden's disease by mTOR inhibition with rapamycin. Cancer Res 68(17):7066–7072PubMedCrossRefGoogle Scholar
  98. 98.
    Morran DC, Wu J, Jamieson NB, Mrowinska A, Kalna G, Karim SA, Au AY, Scarlett CJ, Chang DK, Pajak MZ et al (2014) Targeting mTOR dependency in pancreatic cancer. Gut 63(9):1481–1489PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Hsieh AC, Ruggero D (2010) Targeting eukaryotic translation initiation factor 4E (eIF4E) in cancer. Clin Cancer Res 16(20):4914–4920PubMedCrossRefGoogle Scholar
  100. 100.
    Mamane Y, Petroulakis E, LeBacquer O, Sonenberg N (2006) mTOR, translation initiation and cancer. Oncogene 25(48):6416–6422PubMedCrossRefGoogle Scholar
  101. 101.
    Faller WJ, Jackson TJ, Knight JR, Ridgway RA, Jamieson T, Karim SA, Jones C, Radulescu S, Huels DJ, Myant KB et al (2015) mTORC1-mediated translational elongation limits intestinal tumour initiation and growth. Nature 517(7535):497–500PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Csibi A, Lee G, Yoon SO, Tong H, Ilter D, Elia I, Fendt SM, Roberts TM, Blenis J (2014) The mTORC1/S6K1 pathway regulates glutamine metabolism through the eIF4B-dependent control of c-Myc translation. Curr Biol 24(19):2274–2280PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S et al (2010) Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 39(2):171–183PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E, Guertin DA, Madden KL, Carpenter AE, Finck BN et al (2011) mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146(3):408–420PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Yuan M, Pino E, Wu L, Kacergis M, Soukas AA (2012) Identification of Akt-independent regulation of hepatic lipogenesis by mammalian target of rapamycin (mTOR) complex 2. J Biol Chem 287(35):29579–29588PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Cornu M, Oppliger W, Albert V, Robitaille AM, Trapani F, Quagliata L, Fuhrer T, Sauer U, Terracciano L, Hall MN (2014) Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21. Proc Natl Acad Sci U S A 111(32):11592–11599PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Kantidakis T, Ramsbottom BA, Birch JL, Dowding SN, White RJ (2010) mTOR associates with TFIIIC, is found at tRNA and 5S rRNA genes, and targets their repressor Maf1. Proc Natl Acad Sci U S A 107(26):11823–11828PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Mayer C, Zhao J, Yuan X, Grummt I (2004) mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev 18(4):423–434PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Michels AA, Robitaille AM, Buczynski-Ruchonnet D, Hodroj W, Reina JH, Hall MN, Hernandez N (2010) mTORC1 directly phosphorylates and regulates human MAF1. Mol Cell Biol 30(15):3749–3757PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Shor B, Wu J, Shakey Q, Toral-Barza L, Shi C, Follettie M, Yu K (2010) Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells. J Biol Chem 285(20):15380–15392PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Ben-Sahra I, Howell JJ, Asara JM, Manning BD (2013) Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 339(6125):1323–1328PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Robitaille AM, Christen S, Shimobayashi M, Cornu M, Fava LL, Moes S, Prescianotto-Baschong C, Sauer U, Jenoe P, Hall MN (2013) Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339(6125):1320–1323PubMedCrossRefGoogle Scholar
  113. 113.
    Aoki T, Weber G (1981) Carbamoyl phosphate synthetase (glutamine-hydrolyzing): increased activity in cancer cells. Science 212(4493):463–465PubMedCrossRefGoogle Scholar
  114. 114.
    Sigoillot FD, Sigoillot SM, Guy HI (2004) Breakdown of the regulatory control of pyrimidine biosynthesis in human breast cancer cells. Int J Cancer 109(4):491–498PubMedCrossRefGoogle Scholar
  115. 115.
    Otto E, McCord S, Tlsty TD (1989) Increased incidence of CAD gene amplification in tumorigenic rat lines as an indicator of genomic instability of neoplastic cells. J Biol Chem 264(6):3390–3396PubMedGoogle Scholar
  116. 116.
    Vatteroni L, Piras A, Mariani T, Caligo MA, Rainaldi G (1993) Accumulation of anchorage independent cells showing amplified genes (CAD) during the in vitro propagation of CHEF18 Chinese hamster cells. Cell Prolif 26(2):161–170PubMedCrossRefGoogle Scholar
  117. 117.
    Gulhati P, Bowen KA, Liu J, Stevens PD, Rychahou PG, Chen M, Lee EY, Weiss HL, O'Connor KL, Gao T et al (2011) mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res 71(9):3246–3256PubMedCentralPubMedCrossRefGoogle Scholar
  118. 118.
    Zhou H, Huang S (2011) Role of mTOR signaling in tumor cell motility, invasion and metastasis. Curr Protein Pept Sci 12(1):30–42PubMedCentralPubMedCrossRefGoogle Scholar
  119. 119.
    Martel RR, Klicius J, Galet S (1977) Inhibition of the immune response by rapamycin, a new antifungal antibiotic. Can J Physiol Pharmacol 55(1):48–51PubMedCrossRefGoogle Scholar
  120. 120.
    Benjamin D, Colombi M, Moroni C, Hall MN (2011) Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov 10(11):868–880PubMedCrossRefGoogle Scholar
  121. 121.
    Lamming DW, Ye L, Sabatini DM, Baur JA (2013) Rapalogs and mTOR inhibitors as anti-aging therapeutics. J Clin Invest 123(3):980–989PubMedCentralPubMedCrossRefGoogle Scholar
  122. 122.
    Choo AY, Yoon SO, Kim SG, Roux PP, Blenis J (2008) Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc Natl Acad Sci U S A 105(45):17414–17419PubMedCentralPubMedCrossRefGoogle Scholar
  123. 123.
    Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, Egia A, Sasaki AT, Thomas G, Kozma SC et al (2008) Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 118(9):3065–3074PubMedCentralPubMedGoogle Scholar
  124. 124.
    Apsel B, Blair JA, Gonzalez B, Nazif TM, Feldman ME, Aizenstein B, Hoffman R, Williams RL, Shokat KM, Knight ZA (2008) Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat Chem Biol 4(11):691–699PubMedCentralPubMedCrossRefGoogle Scholar
  125. 125.
    Alain T, Morita M, Fonseca BD, Yanagiya A, Siddiqui N, Bhat M, Zammit D, Marcus V, Metrakos P, Voyer LA et al (2012) eIF4E/4E-BP ratio predicts the efficacy of mTOR targeted therapies. Cancer Res 72(24):6468–6476PubMedCrossRefGoogle Scholar
  126. 126.
    Martineau Y, Azar R, Muller D, Lasfargues C, El Khawand S, Anesia R, Pelletier J, Bousquet C, Pyronnet S (2014) Pancreatic tumours escape from translational control through 4E-BP1 loss. Oncogene 33(11):1367–1374PubMedCrossRefGoogle Scholar
  127. 127.
    Rodrik-Outmezguine VS, Chandarlapaty S, Pagano NC, Poulikakos PI, Scaltriti M, Moskatel E, Baselga J, Guichard S, Rosen N (2011) mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling. Cancer Discov 1(3):248–259PubMedCentralPubMedCrossRefGoogle Scholar
  128. 128.
    Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O, Loewith R, Stokoe D, Balla A, Toth B et al (2006) A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 125(4):733–747PubMedCentralPubMedCrossRefGoogle Scholar
  129. 129.
    Gil del Alcazar CR, Hardebeck MC, Mukherjee B, Tomimatsu N, Gao X, Yan J, Xie XJ, Bachoo R, Li L, Habib AA et al (2014) Inhibition of DNA double-strand break repair by the dual PI3K/mTOR inhibitor NVP-BEZ235 as a strategy for radiosensitization of glioblastoma. Clin Cancer Res 20(5):1235–1248PubMedCrossRefGoogle Scholar
  130. 130.
    Yang F, Qian XJ, Qin W, Deng R, Wu XQ, Qin J, Feng GK, Zhu XF (2013) Dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 has a therapeutic potential and sensitizes cisplatin in nasopharyngeal carcinoma. PLoS One 8(3), e59879. doi: 10.1371/journal.pone.0059879 PubMedCentralPubMedCrossRefGoogle Scholar
  131. 131.
    Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V, Majumder PK, Baselga J, Rosen N (2011) AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell 19(1):58–71PubMedCentralPubMedCrossRefGoogle Scholar
  132. 132.
    Serra V, Scaltriti M, Prudkin L, Eichhorn PJ, Ibrahim YH, Chandarlapaty S, Markman B, Rodriguez O, Guzman M, Rodriguez S et al (2011) PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer. Oncogene 30(22):2547–2557PubMedCentralPubMedCrossRefGoogle Scholar
  133. 133.
    Kim A, Lee JE, Lee SS, Kim C, Lee SJ, Jang WS, Park S (2013) Coexistent mutations of KRAS and PIK3CA affect the efficacy of NVP-BEZ235, a dual PI3K/MTOR inhibitor, in regulating the PI3K/MTOR pathway in colorectal cancer. Int J Cancer 133(4):984–996PubMedCrossRefGoogle Scholar
  134. 134.
    Ilic N, Utermark T, Widlund HR, Roberts TM (2011) PI3K-targeted therapy can be evaded by gene amplification along the MYC-eukaryotic translation initiation factor 4E (eIF4E) axis. Proc Natl Acad Sci U S A 108(37):E699–708PubMedCentralPubMedCrossRefGoogle Scholar
  135. 135.
    Dalal M, Jacobs-El N, Nicholson B, Tuo J, Chew E, Chan CC, Nussenblatt R, Ferris F, Meyerle C (2013) Subconjunctival Palomid 529 in the treatment of neovascular age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 251(12):2705–2709PubMedCentralPubMedCrossRefGoogle Scholar
  136. 136.
    Burket JA, Benson AD, Tang AH, Deutsch SI (2014) Rapamycin improves sociability in the BTBR T(+)Itpr3(tf)/J mouse model of autism spectrum disorders. Brain Res Bull 100:70–75PubMedCrossRefGoogle Scholar
  137. 137.
    Gkogkas CG, Khoutorsky A, Ran I, Rampakakis E, Nevarko T, Weatherill DB, Vasuta C, Yee S, Truitt M, Dallaire P et al (2013) Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature 493(7432):371–377PubMedCentralPubMedCrossRefGoogle Scholar
  138. 138.
    Sato A, Kasai S, Kobayashi T, Takamatsu Y, Hino O, Ikeda K, Mizuguchi M (2012) Rapamycin reverses impaired social interaction in mouse models of tuberous sclerosis complex. Nat Commun 3:1292PubMedCentralPubMedCrossRefGoogle Scholar
  139. 139.
    Chen C, Liu Y, Liu Y, Zheng P (2009) mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal 2(98):ra75PubMedCentralPubMedCrossRefGoogle Scholar
  140. 140.
    Mannick JB, Del Giudice G, Lattanzi M, Valiante NM, Praestgaard J, Huang B, Lonetto MA, Maecker HT, Kovarik J, Carson S et al (2014) mTOR inhibition improves immune function in the elderly. Sci Transl Med 6(268):268ra179PubMedCrossRefGoogle Scholar
  141. 141.
    Flynn JM, O'Leary MN, Zambataro CA, Academia EC, Presley MP, Garrett BJ, Zykovich A, Mooney SD, Strong R, Rosen CJ et al (2013) Late-life rapamycin treatment reverses age-related heart dysfunction. Aging Cell 12(5):851–862PubMedCentralPubMedCrossRefGoogle Scholar
  142. 142.
    Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS et al (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460(7253):392–395PubMedCentralPubMedGoogle Scholar
  143. 143.
    Pallet N, Legendre C (2013) Adverse events associated with mTOR inhibitors. Expert Opin Drug Saf 12(2):177–186PubMedCrossRefGoogle Scholar
  144. 144.
    Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15(23):6541–6551PubMedCentralPubMedGoogle Scholar
  145. 145.
    Facchinetti V, Ouyang W, Wei H, Soto N, Lazorchak A, Gould C, Lowry C, Newton AC, Mao Y, Miao RQ et al (2008) The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 27(14):1932–1943PubMedCentralPubMedCrossRefGoogle Scholar
  146. 146.
    Liu P, Begley M, Michowski W, Inuzuka H, Ginzberg M, Gao D, Tsou P, Gan W, Papa A, Kim BM et al (2014) Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus. Nature 508(7497):541–545PubMedCentralPubMedCrossRefGoogle Scholar
  147. 147.
    Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101PubMedCrossRefGoogle Scholar
  148. 148.
    Bohn G, Allroth A, Brandes G, Thiel J, Glocker E, Schaffer AA, Rathinam C, Taub N, Teis D, Zeidler C et al (2007) A novel human primary immunodeficiency syndrome caused by deficiency of the endosomal adaptor protein p14. Nat Med 13(1):38–45PubMedCrossRefGoogle Scholar
  149. 149.
    Burguete-Garcia AI, Cruz-Lopez M, Madrid-Marina V, Lopez-Ridaura R, Hernandez-Avila M, Cortina B, Gomez RE, Velasco-Mondragon E (2010) Association of Gly972Arg polymorphism of IRS1 gene with type 2 diabetes mellitus in lean participants of a national health survey in Mexico: a candidate gene study. Metabolism 59(1):38–45PubMedCrossRefGoogle Scholar
  150. 150.
    Celi FS, Negri C, Tanner K, Raben N, De Pablo F, Rovira A, Pallardo LF, Martin-Vaquero P, Stern MP, Mitchell BD et al (2000) Molecular scanning for mutations in the insulin receptor substrate-1 (IRS-1) gene in Mexican Americans with type 2 diabetes mellitus. Diabetes Metab Res Rev 16(5):370–377PubMedCrossRefGoogle Scholar
  151. 151.
    Jellema A, Zeegers MP, Feskens EJ, Dagnelie PC, Mensink RP (2003) Gly972Arg variant in the insulin receptor substrate-1 gene and association with type 2 diabetes: a meta-analysis of 27 studies. Diabetologia 46(7):990–995PubMedCrossRefGoogle Scholar
  152. 152.
    Rampersaud E, Damcott CM, Fu M, Shen H, McArdle P, Shi X, Shelton J, Yin J, Chang YP, Ott SH et al (2007) Identification of novel candidate genes for type 2 diabetes from a genome-wide association scan in the Old Order Amish: evidence for replication from diabetes-related quantitative traits and from independent populations. Diabetes 56(12):3053–3062PubMedCrossRefGoogle Scholar
  153. 153.
    Sanchez-Cespedes M (2007) A role for LKB1 gene in human cancer beyond the Peutz-Jeghers syndrome. Oncogene 26(57):7825–7832PubMedCrossRefGoogle Scholar
  154. 154.
    Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27(41):5497–5510PubMedCentralPubMedCrossRefGoogle Scholar
  155. 155.
    Dazert E, Hall MN (2011) mTOR signaling in disease. Curr Opin Cell Biol 23(6):744–755PubMedCrossRefGoogle Scholar
  156. 156.
    Cancer Genome Atlas Research N (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474(7353):609–615CrossRefGoogle Scholar
  157. 157.
    Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage S et al (2007) A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448(7152):439–444PubMedCrossRefGoogle Scholar
  158. 158.
    Liu P, Gan W, Inuzuka H, Lazorchak AS, Gao D, Arojo O, Liu D, Wan L, Zhai B, Yu Y et al (2013) Sin1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signalling to suppress tumorigenesis. Nat Cell Biol 15(11):1340–1350PubMedCentralPubMedCrossRefGoogle Scholar
  159. 159.
    Lu ZH, Shvartsman MB, Lee AY, Shao JM, Murray MM, Kladney RD, Fan D, Krajewski S, Chiang GG, Mills GB et al (2010) Mammalian target of rapamycin activator RHEB is frequently overexpressed in human carcinomas and is critical and sufficient for skin epithelial carcinogenesis. Cancer Res 70(8):3287–3298PubMedCentralPubMedCrossRefGoogle Scholar
  160. 160.
    Nardella C, Chen Z, Salmena L, Carracedo A, Alimonti A, Egia A, Carver B, Gerald W, Cordon-Cardo C, Pandolfi PP (2008) Aberrant Rheb-mediated mTORC1 activation and Pten haploinsufficiency are cooperative oncogenic events. Genes Dev 22(16):2172–2177PubMedCentralPubMedCrossRefGoogle Scholar
  161. 161.
    Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ et al (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304(5670):554PubMedCrossRefGoogle Scholar
  162. 162.
    Nanjundan M, Zhang F, Schmandt R, Smith-McCune K, Mills GB (2007) Identification of a novel splice variant of AML1b in ovarian cancer patients conferring loss of wild-type tumor suppressive functions. Oncogene 26(18):2574–2584PubMedCrossRefGoogle Scholar
  163. 163.
    Roffey J, Rosse C, Linch M, Hibbert A, McDonald NQ, Parker PJ (2009) Protein kinase C intervention: the state of play. Curr Opin Cell Biol 21(2):268–279PubMedCrossRefGoogle Scholar
  164. 164.
    Sato T, Nakashima A, Guo L, Coffman K, Tamanoi F (2010) Single amino-acid changes that confer constitutive activation of mTOR are discovered in human cancer. Oncogene 29(18):2746–2752PubMedCentralPubMedCrossRefGoogle Scholar
  165. 165.
    Sciarretta S, Volpe M, Sadoshima J (2014) Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ Res 114(3):549–564PubMedCentralPubMedCrossRefGoogle Scholar
  166. 166.
    Bissler JJ, Kingswood JC, Radzikowska E, Zonnenberg BA, Frost M, Belousova E, Sauter M, Nonomura N, Brakemeier S, de Vries PJ et al (2013) Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis (EXIST-2): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 381(9869):817–824PubMedCrossRefGoogle Scholar
  167. 167.
    Krueger DA, Care MM, Agricola K, Tudor C, Mays M, Franz DN (2013) Everolimus long-term safety and efficacy in subependymal giant cell astrocytoma. Neurology 80(6):574–580PubMedCentralPubMedCrossRefGoogle Scholar
  168. 168.
    Krueger DA, Wilfong AA, Holland-Bouley K, Anderson AE, Agricola K, Tudor C, Mays M, Lopez CM, Kim MO, Franz DN (2013) Everolimus treatment of refractory epilepsy in tuberous sclerosis complex. Ann Neurol 74(5):679–687PubMedCrossRefGoogle Scholar
  169. 169.
    Kwiatkowski DJ, Palmer MR, Jozwiak S, Bissler J, Franz D, Segal S, Chen D, Sampson JR (2015). Response to everolimus is seen in TSC-associated SEGAs and angiomyolipomas independent of mutation type and site in TSC1 and TSC2. Eur J Hum Genet. doi:10.1038/ejhg.2015.47.Google Scholar
  170. 170.
    Dibbens LM, de Vries B, Donatello S, Heron SE, Hodgson BL, Chintawar S, Crompton DE, Hughes JN, Bellows ST, Klein KM et al (2013) Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nat Genet 45(5):546–551PubMedCrossRefGoogle Scholar
  171. 171.
    Lal D, Reinthaler EM, Schubert J, Muhle H, Riesch E, Kluger G, Jabbari K, Kawalia A, Baumel C, Holthausen H et al (2014) DEPDC5 mutations in genetic focal epilepsies of childhood. Ann Neurol 75(5):788–792PubMedCrossRefGoogle Scholar
  172. 172.
    Scheffer IE, Heron SE, Regan BM, Mandelstam S, Crompton DE, Hodgson BL, Licchetta L, Provini F, Bisulli F, Vadlamudi L et al (2014) Mutations in mammalian target of rapamycin regulator DEPDC5 cause focal epilepsy with brain malformations. Ann Neurol 75(5):782–787PubMedCrossRefGoogle Scholar
  173. 173.
    Graziotto JJ, Cao K, Collins FS, Krainc D (2012) Rapamycin activates autophagy in Hutchinson-Gilford progeria syndrome: implications for normal aging and age-dependent neurodegenerative disorders. Autophagy 8(1):147–151PubMedCentralPubMedCrossRefGoogle Scholar
  174. 174.
    Stahl A, Paschek L, Martin G, Gross NJ, Feltgen N, Hansen LL, Agostini HT (2008) Rapamycin reduces VEGF expression in retinal pigment epithelium (RPE) and inhibits RPE-induced sprouting angiogenesis in vitro. FEBS Lett 582(20):3097–3102PubMedCrossRefGoogle Scholar
  175. 175.
    Ibraghimov-Beskrovnaya O, Natoli TA (2011) mTOR signaling in polycystic kidney disease. Trends Mol Med 17(11):625–633PubMedCrossRefGoogle Scholar
  176. 176.
    Bibee KP, Cheng YJ, Ching JK, Marsh JN, Li AJ, Keeling RM, Connolly AM, Golumbek PT, Myerson JW, Hu G et al (2014) Rapamycin nanoparticles target defective autophagy in muscular dystrophy to enhance both strength and cardiac function. FASEB J 28(5):2047–2061PubMedCentralPubMedCrossRefGoogle Scholar
  177. 177.
    De Palma C, Morisi F, Cheli S, Pambianco S, Cappello V, Vezzoli M, Rovere-Querini P, Moggio M, Ripolone M, Francolini M et al (2012) Autophagy as a new therapeutic target in Duchenne muscular dystrophy. Cell Death Dis 3:e418PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.BiozentrumUniversity of BaselBaselSwitzerland

Personalised recommendations