Journal of Molecular Medicine

, Volume 93, Issue 12, pp 1327–1339 | Cite as

Adiponectin attenuates liver fibrosis by inducing nitric oxide production of hepatic stellate cells

  • Zhixia Dong
  • Lin Su
  • Saeed Esmaili
  • Tristan J. Iseli
  • Mehdi Ramezani-Moghadam
  • Liangshuo Hu
  • Aimin Xu
  • Jacob George
  • Jianhua Wang
Original Article


Adiponectin protects against liver fibrosis, but the mechanisms have not been fully elucidated. Here, we showed that adiponectin upregulated inducible nitric oxide synthase (iNOS) messenger RNA (mRNA) and protein expression in hepatic non-parenchymal cells, particularly in hepatic stellate cells (HSCs), and increased nitric oxide (NO2−/NO3−) concentration in HSC-conditioned medium. Adiponectin attenuated HSC proliferation and migration but promoted apoptosis in a NO-dependent manner. More advanced liver fibrosis with decreased iNOS/NO levels was observed in adiponectin knockout mice comparing to wide-type mice when administered with CCI4 while NO donor supplementation rescued the phenotype. Further experiments demonstrated that adiponectin-induced iNOS/NO system activation is mediated through adipoR2-AMPK-JNK/Erk1/2-NF-κB signaling. These data suggest that adiponectin inhibits HSC function, further limiting the development of liver fibrosis at least in part through adiponectin-induced NO release. Therefore, adiponectin-mediated NO signaling may be a novel target for the treatment of liver fibrosis.

Key messages

• Adiponectin activates HSC iNOS/NO and SEC eNOS/NO systems.

• Adiponectin inhibits HSC proliferation and migration but promotes its apoptosis.

• Adiponectin inhibits CCL4-induced liver fibrosis by modulation of liver iNOS/NO.

• Adiponectin stimulates HSC iNOS/NO via adipoR2-AMPK-JNK/ErK1/2-NF-κB pathway.


Adiponectin Hepatic stellate cell Inducible nitric oxide synthase The AMP-activated protein kinase 





Adiponectin knockout


Adenosine monophosphate-activated protein kinase


Alpha smooth muscle actin


Carbon tetrachloride


Extracellular signal-regulated kinase1/2


Hepatic stellate cells


Inducible nitric oxide synthase


c-Jun terminal kinase


NG-nitro-l-arginine methyl ester, hydrochloride


Ras-mitogen-activated protein kinase


Nitric oxide


Neuronal nitric oxide synthase


Nuclear factor kappa B


Platelet-derived growth factor


Ammonium pyrrolidinedithiocarbamate


Sinusoidal endothelial cells


Small interfering RNA


S-methylisothiourea hemisulfate salt


Transforming growth factor beta 1


Wide type



We thank Xin Wang (Flow Cytometry Facility, Westmead Millennium Institute) and Hong Yu (Microscopy Unit, Westmead Millennium Institute) for technical assistance. This study was supported by the National Health and Medical Research Council of Australia (AP1004595 and a Program Grant 1053206) and the Robert W. Storr Bequest to the University of Sydney.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

109_2015_1313_MOESM1_ESM.pdf (653 kb)
ESM 1 (PDF 653 kb)


  1. 1.
    Galic S, Oakhill JS, Steinberg GR (2010) Adipose tissue as an endocrine organ. Mol Cell Endocrinol 316:129–139CrossRefPubMedGoogle Scholar
  2. 2.
    Masaki T, Chiba S, Tatsukawa H, Yasuda T, Noguchi H, Seike M, Yoshimatsu H (2004) Adiponectin protects LPS-induced liver injury through modulation of TNF-alpha in KK-Ay obese mice. Hepatology 40:177–184CrossRefPubMedGoogle Scholar
  3. 3.
    Handy JA, Saxena NK, Fu P, Lin S, Mells JE, Gupta NA, Anania FA (2010) Adiponectin activation of AMPK disrupts leptin-mediated hepatic fibrosis via suppressors of cytokine signaling (SOCS-3). J Cell Biochem 110:1195–1207PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Kamada Y, Tamura S, Kiso S, Matsumoto H, Saji Y, Yoshida Y, Fukui K, Maeda N, Nishizawa H, Nagaretani H et al (2003) Enhanced carbon tetrachloride-induced liver fibrosis in mice lacking adiponectin. Gastroenterology 125:1796–1807CrossRefPubMedGoogle Scholar
  5. 5.
    Ding X, Saxena NK, Lin S, Xu A, Srinivasan S, Anania FA (2005) The roles of leptin and adiponectin: a novel paradigm in adipocytokine regulation of liver fibrosis and stellate cell biology. Am J Pathol 166:1655–1669PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Adachi M, Brenner DA (2008) High molecular weight adiponectin inhibits proliferation of hepatic stellate cells via activation of adenosine monophosphate-activated protein kinase. Hepatology 47:677–685CrossRefPubMedGoogle Scholar
  7. 7.
    Grebely J, Feld JJ, Applegate T, Matthews GV, Hellard M, Sherker A, Petoumenos K, Zang G, Shaw I, Yeung B et al (2013) Plasma interferon-gamma-inducible protein-10 (IP-10) levels during acute hepatitis C virus infection. Hepatology 57:2124–2134PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Gracia-Sancho J, Lavina B, Rodriguez-Vilarrupla A, Garcia-Caldero H, Fernandez M, Bosch J, Garcia-Pagan JC (2008) Increased oxidative stress in cirrhotic rat livers: a potential mechanism contributing to reduced nitric oxide bioavailability. Hepatology 47:1248–1256CrossRefPubMedGoogle Scholar
  9. 9.
    Chen Y, Hozawa S, Sawamura S, Sato S, Fukuyama N, Tsuji C, Mine T, Okada Y, Tanino R, Ogushi Y et al (2005) Deficiency of inducible nitric oxide synthase exacerbates hepatic fibrosis in mice fed high-fat diet. Biochem Biophys Res Commun 326:45–51CrossRefPubMedGoogle Scholar
  10. 10.
    Lukivskaya O, Patsenker E, Lis R, Buko VU (2008) Inhibition of inducible nitric oxide synthase activity prevents liver recovery in rat thioacetamide-induced fibrosis reversal. Eur J Clin Invest 38:317–325CrossRefPubMedGoogle Scholar
  11. 11.
    Vercelino R, Crespo I, de Souza GF, Cuevas MJ, de Oliveira MG, Marroni NP, Gonzalez-Gallego J, Tunon MJ (2010) S-nitroso-N-acetylcysteine attenuates liver fibrosis in cirrhotic rats. J Mol Med (Berl) 88:401–411CrossRefGoogle Scholar
  12. 12.
    Failli P, De FR, Caligiuri A, Gentilini A, Romanelli RG, Marra F, Batignani G, Guerra CT, Laffi G, Gentilini P et al (2000) Nitrovasodilators inhibit platelet-derived growth factor-induced proliferation and migration of activated human hepatic stellate cells. Gastroenterology 119:479–492CrossRefPubMedGoogle Scholar
  13. 13.
    Langer DA, Das A, Semela D, Kang-Decker N, Hendrickson H, Bronk SF, Katusic ZS, Gores GJ, Shah VH (2008) Nitric oxide promotes caspase-independent hepatic stellate cell apoptosis through the generation of reactive oxygen species. Hepatology 47:1983–1993PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Lee JS, Kang Decker N, Chatterjee S, Yao J, Friedman S, Shah V (2005) Mechanisms of nitric oxide interplay with Rho GTPase family members in modulation of actin membrane dynamics in pericytes and fibroblasts. Am J Pathol 166:1861–1870PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Deleve LD, Wang X, Guo Y (2008) Sinusoidal endothelial cells prevent rat stellate cell activation and promote reversion to quiescence. Hepatology 48:920–930PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Kawada N, Kuroki T, Uoya M, Inoue M, Kobayashi K (1996) Smooth muscle alpha-actin expression in rat hepatic stellate cell is regulated by nitric oxide and cGMP production. Biochem Biophys Res Commun 229:238–242CrossRefPubMedGoogle Scholar
  17. 17.
    Cheng KK, Lam KS, Wang Y, Huang Y, Carling D, Wu D, Wong C, Xu A (2007) Adiponectin-induced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells. Diabetes 56:1387–1394CrossRefPubMedGoogle Scholar
  18. 18.
    Gonon AT, Widegren U, Bulhak A, Salehzadeh F, Persson J, Sjoquist PO, Pernow J (2008) Adiponectin protects against myocardial ischaemia-reperfusion injury via AMP-activated protein kinase, Akt, and nitric oxide. Cardiovasc Res 78:116–122CrossRefPubMedGoogle Scholar
  19. 19.
    Nishimura M, Izumiya Y, Higuchi A, Shibata R, Qiu J, Kudo C, Shin HK, Moskowitz MA, Ouchi N (2008) Adiponectin prevents cerebral ischemic injury through endothelial nitric oxide synthase dependent mechanisms. Circulation 117:216–223CrossRefPubMedGoogle Scholar
  20. 20.
    Lago R, Gomez R, Otero M, Lago F, Gallego R, Dieguez C, Gomez-Reino JJ, Gualillo O (2008) A new player in cartilage homeostasis: adiponectin induces nitric oxide synthase type II and pro-inflammatory cytokines in chondrocytes. Osteoarthr Cartil 16:1101–1109CrossRefPubMedGoogle Scholar
  21. 21.
    Koskinen A, Juslin S, Nieminen R, Moilanen T, Vuolteenaho K, Moilanen E (2011) Adiponectin associates with markers of cartilage degradation in osteoarthritis and induces production of proinflammatory and catabolic factors through mitogen-activated protein kinase pathways. Arthritis Res Ther 13:R184PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ (2003) Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem 278:45021–45026CrossRefPubMedGoogle Scholar
  23. 23.
    Chang J, Li Y, Huang Y, Lam KS, Hoo RL, Wong WT, Cheng KK, Wang Y, Vanhoutte PM, Xu A (2010) Adiponectin prevents diabetic premature senescence of endothelial progenitor cells and promotes endothelial repair by suppressing the p38 MAP kinase/p16INK4A signaling pathway. Diabetes 59:2949–2959PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    El Hasnaoui-Saadani R, Alayza RC, Launay T, Pichon A, Quidu P, Beaudry M, Leon-Velarde F, Richalet JP, Duvallet A, Favret F (1985) Brain stem NO modulates ventilatory acclimatization to hypoxia in mice. J Appl Physiol 103:1506–1512CrossRefGoogle Scholar
  25. 25.
    Lowenstein CJ, Alley EW, Raval P, Snowman AM, Snyder SH, Russell SW, Murphy WJ (1993) Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proc Natl Acad Sci U S A 90:9730–9734PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Xie QW, Whisnant R, Nathan C (1993) Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon gamma and bacterial lipopolysaccharide. J Exp Med 177:1779–1784CrossRefPubMedGoogle Scholar
  27. 27.
    Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, Bihain BE, Lodish HF (2001) Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci U S A 98:2005–2010PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K et al (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288–1295CrossRefPubMedGoogle Scholar
  29. 29.
    Shah V, Cao S, Hendrickson H, Yao J, Katusic ZS (2001) Regulation of hepatic eNOS by caveolin and calmodulin after bile duct ligation in rats. Am J Physiol Gastrointest Liver Physiol 280:G1209–G1216PubMedGoogle Scholar
  30. 30.
    Leifeld L, Fielenbach M, Dumoulin FL, Speidel N, Sauerbruch T, Spengler U (2002) Inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) expression in fulminant hepatic failure. J Hepatol 37:613–619CrossRefPubMedGoogle Scholar
  31. 31.
    Wang W, Zhao CY, Wang YD, He X, Shen C, Cao W, Zhou JY, Zhen Z (2011) Adiponectin inhibits the activation of hepatic stellate cells induced by TGFb1 via up-regulating the expression of eNOS. Zhonghua Gan Zang Bing Za Zhi 19:917–922PubMedGoogle Scholar
  32. 32.
    Caligiuri A, Bertolani C, Guerra CT, Aleffi S, Galastri S, Trappoliere M, Vizzutti F, Gelmini S, Laffi G, Pinzani M et al (2008) Adenosine monophosphate-activated protein kinase modulates the activated phenotype of hepatic stellate cells. Hepatology 47:668–676CrossRefPubMedGoogle Scholar
  33. 33.
    Wang Y, Lam KS, Xu JY, Lu G, Xu LY, Cooper GJ, Xu A (2005) Adiponectin inhibits cell proliferation by interacting with several growth factors in an oligomerization-dependent manner. J Biol Chem 280:18341–18347CrossRefPubMedGoogle Scholar
  34. 34.
    Li J, Billiar TR (1999) Nitric oxide. IV. Determinants of nitric oxide protection and toxicity in liver. Am J Physiol 276:G1069–G1073PubMedGoogle Scholar
  35. 35.
    Rockey DC, Shah V (2004) Nitric oxide biology and the liver: report of an AASLD research workshop. Hepatology 39:250–257CrossRefPubMedGoogle Scholar
  36. 36.
    Chen T, Zamora R, Zuckerbraun B, Billiar TR (2003) Role of nitric oxide in liver injury. Curr Mol Med 3:519–526CrossRefPubMedGoogle Scholar
  37. 37.
    Clemens MG (1999) Nitric oxide in liver injury. Hepatology 30:1–5CrossRefPubMedGoogle Scholar
  38. 38.
    Shah V, Haddad FG, Garcia-Cardena G, Frangos JA, Mennone A, Groszmann RJ, Sessa WC (1997) Liver sinusoidal endothelial cells are responsible for nitric oxide modulation of resistance in the hepatic sinusoids. J Clin Invest 100:2923–2930PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Suematsu M, Goda N, Sano T, Kashiwagi S, Egawa T, Shinoda Y, Ishimura Y (1995) Carbon monoxide: an endogenous modulator of sinusoidal tone in the perfused rat liver. J Clin Invest 96:2431–2437PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Utz J, Ullrich V (1991) Carbon monoxide relaxes ileal smooth muscle through activation of guanylate cyclase. Biochem Pharmacol 41:1195–1201CrossRefPubMedGoogle Scholar
  41. 41.
    Furchgott RF, Jothianandan D (1991) Endothelium-dependent and -independent vasodilation involving cyclic GMP: relaxation induced by nitric oxide, carbon monoxide and light. Blood Vessels 28:52–61PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Zhixia Dong
    • 1
    • 2
  • Lin Su
    • 2
  • Saeed Esmaili
    • 2
  • Tristan J. Iseli
    • 2
  • Mehdi Ramezani-Moghadam
    • 2
  • Liangshuo Hu
    • 2
  • Aimin Xu
    • 3
  • Jacob George
    • 2
  • Jianhua Wang
    • 2
  1. 1.Department of Gastroenterology, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
  2. 2.Storr Liver Unit, Westmead Millennium Institute and Westmead HospitalUniversity of SydneyWestmeadAustralia
  3. 3.State Key Laboratory of Pharmaceutical Biotechnology, and Department of Medicinethe University of Hong KongHong KongHong Kong

Personalised recommendations