Journal of Molecular Medicine

, Volume 93, Issue 7, pp 727–734 | Cite as

How neutrophil extracellular traps orchestrate the local immune response in gout

  • Christian Maueröder
  • Deborah Kienhöfer
  • Jonas Hahn
  • Christine Schauer
  • Bernhard Manger
  • Georg Schett
  • Martin Herrmann
  • Markus H Hoffmann
Review

Abstract

Neutrophil granulocytes possess a large arsenal of pro-inflammatory substances and mechanisms that empower them to drive local acute immune reactions to invading microorganisms or endogenous inflammatory triggers. The use of this armory needs to be tightly controlled to avoid chronic inflammation and collateral tissue damage. In gout, inflammation arises from precipitation of uric acid in the form of needle-shaped monosodium urate crystals. Inflammasome activation by these crystals in local immune cells results in a rapid and dramatic recruitment of neutrophils. This neutrophil influx is accompanied by the infamously intense clinical symptoms of inflammation during an acute gout attack. Neutrophilic inflammation however is equipped with a built-in safeguard; activated neutrophils form neutrophil extracellular traps (NETs). At the very high neutrophil densities that occur at the site of inflammation, NETs build aggregates that densely pack the monosodium urate (MSU) crystals and trap and degrade pro-inflammatory mediators by inherent proteases. Local removal of cytokines and chemokines by aggregated NETs explains how acute inflammation can stop in the consistent presence of the inflammatory trigger. Aggregated NETs resemble early stages of the typical large MSU deposits that constitute the pathognomonic structures of gout, tophi. Although tophi contribute to muscosceletal damage and mortality in patients with chronic gout, they can therefore be considered as a payoff that is necessary to silence the intense inflammatory response during acute gout.

Keywords

Neutrophil extracellular traps Gout Resolution of inflammation Tophus 

References

  1. 1.
    Takei H, Araki A, Watanabe H, Ichinose A, Sendo F (1996) Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. J Leukocyte Biol 59:229–240PubMedGoogle Scholar
  2. 2.
    Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535PubMedCrossRefGoogle Scholar
  3. 3.
    Li P, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang Y (2010) PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med 207:1853–1862PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, Hayama R, Leonelli L, Han H, Grigoryev SA et al (2009) Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 184:205–213PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 191:677–691PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Metzler KD, Fuchs TA, Nauseef WM, Reumaux D, Roesler J, Schulze I, Wahn V, Papayannopoulos V, Zychlinsky A (2011) Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood 117:953–959PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176:231–241PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Akong-Moore K, Chow OA, von Kockritz-Blickwede M, Nizet V (2012) Influences of chloride and hypochlorite on neutrophil extracellular trap formation. PLoS One 7, e42984. doi:10.1371/journal.pone.0042984 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair GD et al (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 13:463–469PubMedCrossRefGoogle Scholar
  10. 10.
    Yipp BG, Petri B, Salina D, Jenne CN, Scott BN, Zbytnuik LD, Pittman K, Asaduzzaman M, Wu K, Meijndert HC et al (2012) Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med 18:1386–1393PubMedCrossRefGoogle Scholar
  11. 11.
    Pilsczek FH, Salina D, Poon KK, Fahey C, Yipp BG, Sibley CD, Robbins SM, Green FH, Surette MG, Sugai M et al (2010) A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol 185:7413–7425PubMedCrossRefGoogle Scholar
  12. 12.
    Patel S, Kumar S, Jyoti A, Srinag BS, Keshari RS, Saluja R, Verma A, Mitra K, Barthwal MK, Krishnamurthy H et al (2010) Nitric oxide donors release extracellular traps from human neutrophils by augmenting free radical generation. Nitric Oxide: Biol Chem / Off J Nitric Oxide Soc 22:226–234CrossRefGoogle Scholar
  13. 13.
    Neeli I, Khan SN, Radic M (2008) Histone deimination as a response to inflammatory stimuli in neutrophils. J Immunol 180:1895–1902PubMedCrossRefGoogle Scholar
  14. 14.
    Gupta AK, Joshi MB, Philippova M, Erne P, Hasler P, Hahn S, Resink TJ (2010) Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett 584:3193–3197PubMedCrossRefGoogle Scholar
  15. 15.
    Kessenbrock K, Krumbholz M, Schonermarck U, Back W, Gross WL, Werb Z, Grone HJ, Brinkmann V, Jenne DE (2009) Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med 15:623–625PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Behnen M, Leschczyk C, Moller S, Batel T, Klinger M, Solbach W, Laskay T (2014) Immobilized immune complexes induce neutrophil extracellular trap release by human neutrophil granulocytes via FcgammaRIIIB and Mac-1. J Immunol 193:1954–1965PubMedCrossRefGoogle Scholar
  17. 17.
    Kingsbury SR, Conaghan PG, McDermott MF (2011) The role of the NLRP3 inflammasome in gout. J Inflamm Res 4:39–49PubMedCentralPubMedGoogle Scholar
  18. 18.
    Saffarzadeh M, Juenemann C, Queisser MA, Lochnit G, Barreto G, Galuska SP, Lohmeyer J, Preissner KT (2012) Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One 7, e32366. doi:10.1371/journal.pone.0032366 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Caudrillier A, Kessenbrock K, Gilliss BM, Nguyen JX, Marques MB, Monestier M, Toy P, Werb Z, Looney MR (2012) Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Investig 122:2661–2671PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Luo L, Zhang S, Wang Y, Rahman M, Syk I, Zhang E, Thorlacius H (2014) Proinflammatory role of neutrophil extracellular traps in abdominal sepsis. Am J Physiol Lung Cell Mol Physiol 307:L586–L596PubMedCrossRefGoogle Scholar
  21. 21.
    Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD (2010) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 107:15880–15885PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Kienhofer D, Hahn J, Schubert I, Reinwald C, Ipseiz N, Lang SC, Borras EB, Amann K, Sjowall C, Barron AE et al (2014) No evidence of pathogenic involvement of cathelicidins in patient cohorts and mouse models of lupus and arthritis. PLoS One 9, e115474. doi:10.1371/journal.pone.0115474 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J, Meller S, Chamilos G, Sebasigari R, Riccieri V et al (2011) Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med 3:73ra19PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Hakkim A, Furnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, Herrmann M, Voll RE, Zychlinsky A (2010) Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci U S A 107:9813–9818PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Jacob CO, Eisenstein M, Dinauer MC, Ming W, Liu Q, John S, Quismorio FP Jr, Reiff A, Myones BL, Kaufman KM et al (2012) Lupus-associated causal mutation in neutrophil cytosolic factor 2 (NCF2) brings unique insights to the structure and function of NADPH oxidase. Proc Natl Acad Sci U S A 109:E59–E67PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Barton LL, Johnson CR (1986) Discoid lupus erythematosus and X-linked chronic granulomatous disease. Pediatr Dermatol 3:376–379PubMedCrossRefGoogle Scholar
  27. 27.
    Cale CM, Morton L, Goldblatt D (2007) Cutaneous and other lupus-like symptoms in carriers of X-linked chronic granulomatous disease: incidence and autoimmune serology. Clin Exp Immunol 148:79–84PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Lee BW, Yap HK (1994) Polyarthritis resembling juvenile rheumatoid arthritis in a girl with chronic granulomatous disease. Arthritis Rheum 37:773–776PubMedCrossRefGoogle Scholar
  29. 29.
    Marks DJ, Miyagi K, Rahman FZ, Novelli M, Bloom SL, Segal AW (2009) Inflammatory bowel disease in CGD reproduces the clinicopathological features of Crohn’s disease. Am J Gastroenterol 104:117–124PubMedCrossRefGoogle Scholar
  30. 30.
    El Kebir D, Filep JG (2013) Modulation of neutrophil apoptosis and the resolution of inflammation through beta2 integrins. Front Immunol 4:60PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Serhan CN, Savill J (2005) Resolution of inflammation: the beginning programs the end. Nat Immunol 6:1191–1197PubMedCrossRefGoogle Scholar
  32. 32.
    Schauer C, Janko C, Munoz LE, Zhao Y, Kienhofer D, Frey B, Lell M, Manger B, Rech J, Naschberger E et al (2014) Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat Med 20:511–517PubMedCrossRefGoogle Scholar
  33. 33.
    Hultqvist M, Olofsson P, Holmberg J, Backstrom BT, Tordsson J, Holmdahl R (2004) Enhanced autoimmunity, arthritis, and encephalomyelitis in mice with a reduced oxidative burst due to a mutation in the Ncf1 gene. Proc Natl Acad Sci U S A 101:12646–12651PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Olofsson P, Holmberg J, Tordsson J, Lu S, Akerstrom B, Holmdahl R (2003) Positional identification of Ncf1 as a gene that regulates arthritis severity in rats. Nat Genet 33:25–32PubMedCrossRefGoogle Scholar
  35. 35.
    Campbell AM, Kashgarian M, Shlomchik MJ (2012) NADPH oxidase inhibits the pathogenesis of systemic lupus erythematosus. Sci Transl Med 4:157ra141PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Simchowitz L, Atkinson JP, Spilberg I (1982) Stimulation of the respiratory burst in human neutrophils by crystal phagocytosis. Arthritis Rheum 25:181–188PubMedCrossRefGoogle Scholar
  37. 37.
    Chen L, Hsieh MS, Ho HC, Liu YH, Chou DT, Tsai SH (2004) Stimulation of inducible nitric oxide synthase by monosodium urate crystals in macrophages and expression of iNOS in gouty arthritis. Nitric Oxide: Biol Chem / Off J Nitric Oxide Soc 11:228–236CrossRefGoogle Scholar
  38. 38.
    Chu SC, Yang SF, Tzang BS, Hsieh YS, Lue KH, Lu KH (2010) Cathepsin B and cystatin C play an inflammatory role in gouty arthritis of the knee. Clin Chim Acta Int J Clin Chem 411:1788–1792CrossRefGoogle Scholar
  39. 39.
    Schorn C, Frey B, Lauber K, Janko C, Strysio M, Keppeler H, Gaipl US, Voll RE, Springer E, Munoz LE et al (2011) Sodium overload and water influx activate the NALP3 inflammasome. J Biol Chem 286:35–41PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Busso N, So A (2012) Microcrystals as DAMPs and their role in joint inflammation. Rheumatology 51:1154–1160PubMedCrossRefGoogle Scholar
  41. 41.
    Ng G, Sharma K, Ward SM, Desrosiers MD, Stephens LA, Schoel WM, Li T, Lowell CA, Ling CC, Amrein MW et al (2008) Receptor-independent, direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells. Immunity 29:807–818PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Meissner F, Molawi K, Zychlinsky A (2008) Superoxide dismutase 1 regulates caspase-1 and endotoxic shock. Nat Immunol 9:866–872PubMedCrossRefGoogle Scholar
  43. 43.
    Meissner F, Seger RA, Moshous D, Fischer A, Reichenbach J, Zychlinsky A (2010) Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease. Blood 116:1570–1573PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Gabelloni ML, Sabbione F, Jancic C, Fuxman Bass J, Keitelman I, Iula L, Oleastro M, Geffner JR, Trevani AS (2013) NADPH oxidase derived reactive oxygen species are involved in human neutrophil IL-1beta secretion but not in inflammasome activation. Eur J Immunol 43:3324–3335PubMedCrossRefGoogle Scholar
  45. 45.
    van de Veerdonk FL, Smeekens SP, Joosten LAB, Kullberg BJ, Dinarello CA, van der Meer JWM, Netea MG (2010) Reactive oxygen species-independent activation of the IL-1β inflammasome in cells from patients with chronic granulomatous disease. Proc Natl Acad Sci U S A 107:3030–3033PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    So A, Busso N (2014) The concept of the inflammasome and its rheumatologic implications. Joint Bone Spine: Rev Rhum 81:398–402CrossRefGoogle Scholar
  47. 47.
    Mankan AK, Dau T, Jenne D, Hornung V (2012) The NLRP3/ASC/Caspase-1 axis regulates IL-1beta processing in neutrophils. Eur J Immunol 42:710–715PubMedCrossRefGoogle Scholar
  48. 48.
    Harijith A, Ebenezer DL, Natarajan V (2014) Reactive oxygen species at the crossroads of inflammasome and inflammation. Front Physiol 5:352PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Apostolidou E, Skendros P, Kambas K, Mitroulis I, Konstantinidis T, Chrysanthopoulou A, Nakos K, Tsironidou V, Koffa M, Boumpas DT et al (2014) Neutrophil extracellular traps regulate IL-1beta-mediated inflammation in familial Mediterranean fever. Ann Rheum Dis. doi:10.1136/annrheumdis-2014-205958 Google Scholar
  50. 50.
    Joosten LA, Netea MG, Fantuzzi G, Koenders MI, Helsen MM, Sparrer H, Pham CT, van der Meer JW, Dinarello CA, van den Berg WB (2009) Inflammatory arthritis in caspase 1 gene-deficient mice: contribution of proteinase 3 to caspase 1-independent production of bioactive interleukin-1beta. Arthritis Rheum 60:3651–3662PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Joosten LA, Netea MG, Mylona E, Koenders MI, Malireddi RK, Oosting M, Stienstra R, van de Veerdonk FL, Stalenhoef AF, Giamarellos-Bourboulis EJ et al (2010) Engagement of fatty acids with Toll-like receptor 2 drives interleukin-1beta production via the ASC/caspase 1 pathway in monosodium urate monohydrate crystal-induced gouty arthritis. Arthritis Rheum 62:3237–3248PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Franklin BS, Bossaller L, De Nardo D, Ratter JM, Stutz A, Engels G, Brenker C, Nordhoff M, Mirandola SR, Al-Amoudi A et al (2014) The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat Immunol 15:727–737PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Terkeltaub R, Baird S, Sears P, Santiago R, Boisvert W (1998) The murine homolog of the interleukin-8 receptor CXCR-2 is essential for the occurrence of neutrophilic inflammation in the air pouch model of acute urate crystal-induced gouty synovitis. Arthritis Rheum 41:900–909PubMedCrossRefGoogle Scholar
  54. 54.
    Scanu A, Oliviero F, Gruaz L, Sfriso P, Pozzuoli A, Frezzato F, Agostini C, Burger D, Punzi L (2010) High-density lipoproteins downregulate CCL2 production in human fibroblast-like synoviocytes stimulated by urate crystals. Arthritis Res Ther 12:R23PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Schorn C, Strysio M, Janko C, Munoz LE, Schett G, Herrmann M (2010) The uptake by blood-borne phagocytes of monosodium urate is dependent on heat-labile serum factor(s) and divalent cations. Autoimmunity 43:236–238PubMedCrossRefGoogle Scholar
  56. 56.
    Mitroulis I, Kambas K, Chrysanthopoulou A, Skendros P, Apostolidou E, Kourtzelis I, Drosos GI, Boumpas DT, Ritis K (2011) Neutrophil extracellular trap formation is associated with IL-1beta and autophagy-related signaling in gout. PLoS One 6, e29318. doi:10.1371/journal.pone.0029318 PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Shah K, Spear J, Nathanson LA, McCauley J, Edlow JA (2007) Does the presence of crystal arthritis rule out septic arthritis? J Emerg Med 32:23–26PubMedCrossRefGoogle Scholar
  58. 58.
    Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P et al (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461:282–286PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Bournazou I, Pound JD, Duffin R, Bournazos S, Melville LA, Brown SB, Rossi AG, Gregory CD (2009) Apoptotic human cells inhibit migration of granulocytes via release of lactoferrin. J Clin Investig 119:20–32PubMedCentralPubMedGoogle Scholar
  60. 60.
    Dalbeth N, Pool B, Gamble GD, Smith T, Callon KE, McQueen FM, Cornish J (2010) Cellular characterization of the gouty tophus: a quantitative analysis. Arthritis Rheum 62:1549–1556PubMedCrossRefGoogle Scholar
  61. 61.
    Dalbeth N, House ME, Horne A, Taylor WJ (2013) Reduced creatinine clearance is associated with early development of subcutaneous tophi in people with gout. BMC Musculoskelet Disord 14:363PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Yu TF, Gutman AB (1967) Principles of current management of primary gout. Am J Med Sci 254:893–907PubMedCrossRefGoogle Scholar
  63. 63.
    Yamanaka H, Togashi R, Hakoda M, Terai C, Kashiwazaki S, Dan T, Kamatani N (1998) Optimal range of serum urate concentrations to minimize risk of gouty attacks during anti-hyperuricemic treatment. Adv Exp Med Biol 431:13–18PubMedGoogle Scholar
  64. 64.
    Tramontini N, Huber C, Liu-Bryan R, Terkeltaub RA, Kilgore KS (2004) Central role of complement membrane attack complex in monosodium urate crystal-induced neutrophilic rabbit knee synovitis. Arthritis Rheum 50:2633–2639PubMedCrossRefGoogle Scholar
  65. 65.
    Terkeltaub RA, Dyer CA, Martin J, Curtiss LK (1991) Apolipoprotein (apo) E inhibits the capacity of monosodium urate crystals to stimulate neutrophils. Characterization of intraarticular apo E and demonstration of apo E binding to urate crystals in vivo. J Clin Investig 87:20–26PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Landis RC, Yagnik DR, Florey O, Philippidis P, Emons V, Mason JC, Haskard DO (2002) Safe disposal of inflammatory monosodium urate monohydrate crystals by differentiated macrophages. Arthritis Rheum 46:3026–3033PubMedCrossRefGoogle Scholar
  67. 67.
    You M, Fischer M, Deeg MA, Crabb DW (2002) Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP). J Biol Chem 277:29342–29347PubMedCrossRefGoogle Scholar
  68. 68.
    Perez-Ruiz F, Martin I, Canteli B (2007) Ultrasonographic measurement of tophi as an outcome measure for chronic gout. J Rheumatol 34:1888–1893PubMedGoogle Scholar
  69. 69.
    Puig JG, de Miguel E, Castillo MC, Rocha AL, Martinez MA, Torres RJ (2008) Asymptomatic hyperuricemia: impact of ultrasonography. Nucleosides, Nucleotides Nucleic Acids 27:592–595PubMedCrossRefGoogle Scholar
  70. 70.
    Chhana A, Callon KE, Pool B, Naot D, Gamble GD, Dray M, Pitto R, Bentley J, McQueen FM, Cornish J et al (2013) The effects of monosodium urate monohydrate crystals on chondrocyte viability and function: implications for development of cartilage damage in gout. J Rheumatol 40:2067–2074PubMedCrossRefGoogle Scholar
  71. 71.
    Chhana A, Callon KE, Pool B, Naot D, Watson M, Gamble GD, McQueen FM, Cornish J, Dalbeth N (2011) Monosodium urate monohydrate crystals inhibit osteoblast viability and function: implications for development of bone erosion in gout. Ann Rheum Dis 70:1684–1691PubMedCrossRefGoogle Scholar
  72. 72.
    Barthelemy CR, Nakayama DA, Carrera GF, Lightfoot RW Jr, Wortmann RL (1984) Gouty arthritis: a prospective radiographic evaluation of sixty patients. Skelet Radiol 11:1–8CrossRefGoogle Scholar
  73. 73.
    Rajan A, Aati O, Kalluru R, Gamble GD, Horne A, Doyle AJ, McQueen FM, Dalbeth N (2013) Lack of change in urate deposition by dual-energy computed tomography among clinically stable patients with long-standing tophaceous gout: a prospective longitudinal study. Arthritis Res Ther 15:R160PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Scott JT, Holloway VP, Glass HI, Arnot RN (1969) Studies of uric acid pool size and turnover rate. Ann Rheum Dis 28:366–373PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Fiddis RW, Vlachos N, Calvert PD (1983) Studies of urate crystallisation in relation to gout. Ann Rheum Dis 42(Suppl 1):12–15PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Liote F (2011) Treatment of hyperuricemia, gout and other crystalline arthritidies. Reumatismo 63:276–283Google Scholar
  77. 77.
    Biermann MHC, Araujo EG, Maueröder C, Lell M, Schett G, Manger B, Herrmann M, Rech J, Munoz LE (2014) Dual-energy CT in gout: an update exemplified by selected clinical cases. Gout Hyperuricemia 1:122–126Google Scholar
  78. 78.
    Araujo EG, Bayat S, Petsch C, Englbrecht M, Faustini F, Kleyer A, Hueber AJ, Cavallaro A, Lell M, Dalbeth N et al. (2015) Tophus resolution with pegloticase– a prospective dual energy computed tomography study. RMD Open in pressGoogle Scholar
  79. 79.
    Huang X, Du H, Gu J, Zhao D, Jiang L, Li X, Zuo X, Liu Y, Li Z, Li X et al (2014) An allopurinol-controlled, multicenter, randomized, double-blind, parallel between-group, comparative study of febuxostat in Chinese patients with gout and hyperuricemia. Int J Rheum Dis 17:679–686PubMedCrossRefGoogle Scholar
  80. 80.
    Sarawate CA, Patel PA, Schumacher HR, Yang W, Brewer KK, Bakst AW (2006) Serum urate levels and gout flares: analysis from managed care data. J Clin Rheumat: Pract Rep Rheum Musculoskelet Dis 12:61–65CrossRefGoogle Scholar
  81. 81.
    Riedel AA, Nelson M, Joseph-Ridge N, Wallace K, MacDonald P, Becker M (2004) Compliance with allopurinol therapy among managed care enrollees with gout: a retrospective analysis of administrative claims. J Rheumatol 31:1575–1581PubMedGoogle Scholar
  82. 82.
    Sundy JS, Ganson NJ, Kelly SJ, Scarlett EL, Rehrig CD, Huang W, Hershfield MS (2007) Pharmacokinetics and pharmacodynamics of intravenous PEGylated recombinant mammalian urate oxidase in patients with refractory gout. Arthritis Rheum 56:1021–1028PubMedCrossRefGoogle Scholar
  83. 83.
    Zhang W, Doherty M, Bardin T, Pascual E, Barskova V, Conaghan P, Gerster J, Jacobs J, Leeb B, Liote F et al (2006) EULAR evidence based recommendations for gout. Part II: management. Report of a task force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann Rheum Dis 65:1312–1324PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Schlesinger N (2014) Anti-interleukin-1 therapy in the management of gout. Curr Rheumatol Rep 16:398PubMedCrossRefGoogle Scholar
  85. 85.
    Edwards NL, So A (2014) Emerging therapies for gout. Rheum Dis Clin North Am 40:375–387PubMedCrossRefGoogle Scholar
  86. 86.
    de Luca A, Smeekens SP, Casagrande A, Iannitti R, Conway KL, Gresnigt MS, Begun J, Plantinga TS, Joosten LA, van der Meer JW et al (2014) IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans. Proc Natl Acad Sci U S A 111:3526–3531PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Christian Maueröder
    • 1
  • Deborah Kienhöfer
    • 1
  • Jonas Hahn
    • 1
  • Christine Schauer
    • 1
  • Bernhard Manger
    • 1
  • Georg Schett
    • 1
  • Martin Herrmann
    • 1
  • Markus H Hoffmann
    • 1
  1. 1.Department of Internal Medicine 3University of Erlangen-NurembergErlangenGermany

Personalised recommendations