Advertisement

Journal of Molecular Medicine

, Volume 93, Issue 7, pp 749–758 | Cite as

Attenuation of EMT in RPE cells and subretinal fibrosis by an RAR-γ agonist

  • Kazuhiro KimuraEmail author
  • Tomoko Orita
  • Yang Liu
  • Yang Yang
  • Kazuhiro Tokuda
  • Taishi Kurakazu
  • Takeshi Noda
  • Ryoji Yanai
  • Naoyuki Morishige
  • Atsunobu Takeda
  • Tatsuro Ishibashi
  • Koh-Hei Sonoda
Original Article

Abstract

Subretinal fibrosis contributes to the loss of vision associated with age-related macular degeneration (AMD). Retinal pigment epithelial (RPE) cells play a key role in the pathogenesis of AMD including the fibrotic reaction. We examined the role of retinoic acid receptor-γ (RAR-γ) in the epithelial-mesenchymal transition (EMT) and other fibrosis-related processes in mouse RPE cells cultured in a type I collagen gel. Transforming growth factor-β2 (TGF-β2)–induced collagen gel contraction mediated by the RPE cells was inhibited by the RAR-γ agonist R667 in a concentration- and time-dependent manner. Expression of the mesenchymal markers α-smooth muscle actin and fibronectin, the release of interleukin-6, and the phosphorylation of paxillin, mitogen-activated protein kinases (ERK, p38, and JNK), Smad2, and AKT induced by TGF-β2 were also suppressed by the RAR-γ agonist. Furthermore, gelatin zymography and immunoblot analysis revealed that the TGF-β2-induced release of matrix metalloproteinase (MMP)-2, MMP-3, MMP-8, and MMP-9 from RPE cells was inhibited by R667, and the MMP inhibitor GM6001 attenuated TGF-β2-induced RPE cell contraction. Finally, immunohistofluorescence analysis with antibodies to glial fibrillary acidic protein showed that R667 inhibited the development of subretinal fibrosis in a mouse model in vivo. Our results thus suggest that RAR-γ agonists may prove effective for the treatment of subretinal fibrosis associated with AMD.

Key message

  • RAR-γ agonist R667 suppressed collagen gel contraction mediated by RPE cells.

  • Epithelial-mesenchymal transition (EMT) in RPE cells was inhibited by RAR-γ agonist R667.

  • RAR-γ agonist R667 inhibited fibrosis-related processes in RPE cells.

  • RAR-γ agonists may attenuate AMD-associated fibrosis.

Keywords

Retinal pigment epithelial cell Transforming growth factor-β (TGF-β) Epithelial-mesenchymal transition Extracellular matrix Subretinal fibrosis Age-related macular degeneration 

Notes

Acknowledgments

This study was supported by Takeda Science Foundation. We thank Yukari Mizuno and Shizuka Murata for technical assistance.

Disclosure statement

The authors declare no conflicts of interest.

References

  1. 1.
    van Lookeren Campagne M, LeCouter J, Yaspan BL, Ye W (2014) Mechanisms of age-related macular degeneration and therapeutic opportunities. J Pathol 232:151–164PubMedCrossRefGoogle Scholar
  2. 2.
    Hong YJ, Miura M, Ju MJ, Makita S, Iwasaki T, Yasuno Y (2014) Simultaneous investigation of vascular and retinal pigment epithelial pathologies of exudative macular diseases by multi-functional optical coherence tomography. Invest Ophthalmol Vis Sci. doi: 10.1167/iovs.14-14005 Google Scholar
  3. 3.
    Miller JW (2010) Treatment of age-related macular degeneration: beyond VEGF. Jpn J Ophthalmol 54:523–528PubMedCrossRefGoogle Scholar
  4. 4.
    Lim WK, Chee SP, Sng I, Nussenblatt RB, Chan CC (2004) Immunopathology of progressive subretinal fibrosis: a variant of sympathetic ophthalmia. Am J Ophthalmol 138:475–477PubMedCrossRefGoogle Scholar
  5. 5.
    Saika S, Kono-Saika S, Tanaka T, Yamanaka O, Ohnishi Y, Sato M, Muragaki Y, Ooshima A, Yoo J, Flanders KC et al (2004) Smad3 is required for dedifferentiation of retinal pigment epithelium following retinal detachment in mice. Lab Investig J Tech Methods Pathol 84:1245–1258CrossRefGoogle Scholar
  6. 6.
    Kalluri R, Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112:1776–1784PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Lee H, O’Meara SJ, O’Brien C, Kane R (2007) The role of gremlin, a BMP antagonist, and epithelial-to-mesenchymal transition in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 48:4291–4299PubMedCrossRefGoogle Scholar
  8. 8.
    Simoni D, Tolomeo M (2001) Retinoids, apoptosis and cancer. Curr Pharm Des 7:1823–1837PubMedCrossRefGoogle Scholar
  9. 9.
    Conde I, Paniagua R, Fraile B, Ruiz A, Arenas MI (2004) Expression of vitamin D3 receptor and retinoid receptors in human breast cancer: identification of potential heterodimeric receptors. Int J Oncol 25:1183–1191PubMedGoogle Scholar
  10. 10.
    Soderpalm AK, Fox DA, Karlsson JO, van Veen T (2000) Retinoic acid produces rod photoreceptor selective apoptosis in developing mammalian retina. Invest Ophthalmol Vis Sci 41:937–947PubMedGoogle Scholar
  11. 11.
    Clagett-Dame M, McNeill EM, Muley PD (2006) Role of all-trans retinoic acid in neurite outgrowth and axonal elongation. J Neurobiol 66:739–756PubMedCrossRefGoogle Scholar
  12. 12.
    Liu Y, Kimura K, Orita T, Teranishi S, Suzuki K, Sonoda KH (2014) Inhibition by all-trans-retinoic acid of transforming growth factor-beta-induced collagen gel contraction mediated by human tenon fibroblasts. Invest Ophthalmol Vis Sci 55:4199–4205PubMedCrossRefGoogle Scholar
  13. 13.
    Jo YJ, Sonoda KH, Oshima Y, Takeda A, Kohno R, Yamada J, Hamuro J, Yang Y, Notomi S, Hisatomi T et al (2011) Establishment of a new animal model of focal subretinal fibrosis that resembles disciform lesion in advanced age-related macular degeneration. Invest Ophthalmol Vis Sci 52:6089–6095PubMedCrossRefGoogle Scholar
  14. 14.
    Kimura K, Orita T, Fujitsu Y, Liu Y, Wakuta M, Morishige N, Suzuki K, Sonoda KH (2014) Inhibition by female sex hormones of collagen gel contraction mediated by retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 55:2621–2630PubMedCrossRefGoogle Scholar
  15. 15.
    Ngo P, Ramalingam P, Phillips JA, Furuta GT (2006) Collagen gel contraction assay. Methods Mol Biol 341:103–109PubMedGoogle Scholar
  16. 16.
    Ramachandran C, Patil RV, Combrink K, Sharif NA, Srinivas SP (2011) Rho-Rho kinase pathway in the actomyosin contraction and cell-matrix adhesion in immortalized human trabecular meshwork cells. Mol Vis 17:1877–1890PubMedCentralPubMedGoogle Scholar
  17. 17.
    Lan HY, Chung AC (2011) Transforming growth factor-beta and Smads. Contrib Nephrol 170:75–82PubMedGoogle Scholar
  18. 18.
    Zhang H, Liu ZL (2012) Transforming growth factor-beta neutralizing antibodies inhibit subretinal fibrosis in a mouse model. Int J Ophthalmol 5:307–311PubMedCentralPubMedGoogle Scholar
  19. 19.
    Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C (2001) Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell 12:2730–2741PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Liu Y, Yanai R, Lu Y, Kimura K, Nishida T (2006) Promotion by fibronectin of collagen gel contraction mediated by human corneal fibroblasts. Exp Eye Res 83:1196–1204PubMedCrossRefGoogle Scholar
  21. 21.
    Kischer CW, Shetlar MR, Chvapil M (1982) Hypertrophic scars and keloids: a review and new concept concerning their origin. Scan Electron Microsc :1699–1713Google Scholar
  22. 22.
    Hammer M, Konigsdorffer E, Liebermann C, Framme C, Schuch G, Schweitzer D, Strobel J (2008) Ocular fundus auto-fluorescence observations at different wavelengths in patients with age-related macular degeneration and diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 246:105–114PubMedCrossRefGoogle Scholar
  23. 23.
    Stodtler M, Mietz H, Wiedemann P, Heimann K (1994) Immunohistochemistry of anterior proliferative vitreoretinopathy. Report of 11 cases. Int Ophthalmol 18:323–328PubMedCrossRefGoogle Scholar
  24. 24.
    Eckes B, Nischt R, Krieg T (2010) Cell-matrix interactions in dermal repair and scarring. Fibrogenesis Tissue Repair 3:4PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Suzuki R, Miyazaki Y, Takagi K, Torii K, Taniguchi H (2004) Matrix metalloproteinases in the pathogenesis of asthma and COPD: implications for therapy. Treat Respir Med 3:17–27PubMedCrossRefGoogle Scholar
  26. 26.
    Giambernardi TA, Sakaguchi AY, Gluhak J, Pavlin D, Troyer DA, Das G, Rodeck U, Klebe RJ (2001) Neutrophil collagenase (MMP-8) is expressed during early development in neural crest cells as well as in adult melanoma cells. Matrix Biol J Int Soc Matrix Biol 20:577–587CrossRefGoogle Scholar
  27. 27.
    Kijlstra A, La Heij E, Hendrikse F (2005) Immunological factors in the pathogenesis and treatment of age-related macular degeneration. Ocul Immunol Inflamm 13:3–11PubMedCrossRefGoogle Scholar
  28. 28.
    Kaiser PK, Gragoudas ES (1996) The subretinal fibrosis and uveitis syndrome. Int Ophthalmol Clin 36:145–152PubMedCrossRefGoogle Scholar
  29. 29.
    Baudouin C, Fredj-Reygrobellet D, Brignole F, Negre F, Lapalus P, Gastaud P (1993) Growth factors in vitreous and subretinal fluid cells from patients with proliferative vitreoretinopathy. Ophthalmic Res 25:52–59PubMedCrossRefGoogle Scholar
  30. 30.
    Benson MT, Shepherd L, Rees RC, Rennie IG (1992) Production of interleukin-6 by human retinal pigment epithelium in vitro and its regulation by other cytokines. Curr Eye Res 11(Suppl):173–179PubMedCrossRefGoogle Scholar
  31. 31.
    King RE, Kent KD, Bomser JA (2005) Resveratrol reduces oxidation and proliferation of human retinal pigment epithelial cells via extracellular signal-regulated kinase inhibition. Chem Biol Interact 151:143–149PubMedCrossRefGoogle Scholar
  32. 32.
    Yao HW, Xie QM, Chen JQ, Deng YM, Tang HF (2004) TGF-beta1 induces alveolar epithelial to mesenchymal transition in vitro. Life Sci 76:29–37PubMedCrossRefGoogle Scholar
  33. 33.
    Liu Y, Ko JA, Yanai R, Kimura K, Chikama T, Sagara T, Nishida T (2008) Induction by latanoprost of collagen gel contraction mediated by human tenon fibroblasts: role of intracellular signaling molecules. Invest Ophthalmol Vis Sci 49:1429–1436PubMedCrossRefGoogle Scholar
  34. 34.
    Lotan R (1997) Roles of retinoids and their nuclear receptors in the development and prevention of upper aerodigestive tract cancers. Environ Health Perspect 105(Suppl 4):985–988PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Schambach F, Schupp M, Lazar MA, Reiner SL (2007) Activation of retinoic acid receptor-alpha favours regulatory T cell induction at the expense of IL-17-secreting T helper cell differentiation. Eur J Immunol 37:2396–2399PubMedCrossRefGoogle Scholar
  36. 36.
    Chen F, Desai TJ, Qian J, Niederreither K, Lu J, Cardoso WV (2007) Inhibition of Tgf beta signaling by endogenous retinoic acid is essential for primary lung bud induction. Development 134:2969–2979PubMedCrossRefGoogle Scholar
  37. 37.
    Morales SA, Mareninov S, Prasad P, Wadehra M, Braun J, Gordon LK (2007) Collagen gel contraction by ARPE-19 cells is mediated by a FAK-Src dependent pathway. Exp Eye Res 85:790–798PubMedCrossRefGoogle Scholar
  38. 38.
    Huang Z, Yan DP, Ge BX (2008) JNK regulates cell migration through promotion of tyrosine phosphorylation of paxillin. Cell Signal 20:2002–2012PubMedCrossRefGoogle Scholar
  39. 39.
    Kamato D, Burch ML, Piva TJ, Rezaei HB, Rostam MA, Xu S, Zheng W, Little PJ, Osman N (2013) Transforming growth factor-beta signalling: role and consequences of Smad linker region phosphorylation. Cell Signal 25:2017–2024PubMedCrossRefGoogle Scholar
  40. 40.
    Thomas PE, Peters-Golden M, White ES, Thannickal VJ, Moore BB (2007) PGE(2) inhibition of TGF-beta1-induced myofibroblast differentiation is Smad-independent but involves cell shape and adhesion-dependent signaling. Am J Physiol Lung Cell Mol Physiol 293:L417–L428PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Kazuhiro Kimura
    • 1
    Email author
  • Tomoko Orita
    • 1
  • Yang Liu
    • 1
  • Yang Yang
    • 2
  • Kazuhiro Tokuda
    • 1
  • Taishi Kurakazu
    • 1
  • Takeshi Noda
    • 1
  • Ryoji Yanai
    • 1
  • Naoyuki Morishige
    • 1
  • Atsunobu Takeda
    • 2
  • Tatsuro Ishibashi
    • 2
  • Koh-Hei Sonoda
    • 1
  1. 1.Department of OphthalmologyYamaguchi University Graduate School of MedicineUbe CityJapan
  2. 2.Department of Ophthalmology, Graduate School of Medical SciencesKyushu UniversityHigashi-kuJapan

Personalised recommendations