Journal of Molecular Medicine

, Volume 93, Issue 8, pp 879–889 | Cite as

Hyperhomocysteinemia abrogates fasting-induced cardioprotection against ischemia/reperfusion by limiting bioavailability of hydrogen sulfide anions

  • Shintaro Nakano
  • Isao Ishii
  • Ken Shinmura
  • Kayoko Tamaki
  • Takako Hishiki
  • Noriyuki Akahoshi
  • Tomoaki Ida
  • Tsuyoshi Nakanishi
  • Shotaro Kamata
  • Yoshito Kumagai
  • Takaaki Akaike
  • Keiichi Fukuda
  • Motoaki Sano
  • Makoto Suematsu
Original Article


Elevated plasma homocysteine levels are considered an independent risk factor for cardiovascular diseases. Experimental evidence has shown that hydrogen sulfide anion (HS) protects the myocardium from ischemia/reperfusion (IR) injury. Both homocysteine levels and endogenous HS production are mainly regulated by two transsulfuration enzymes, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH). We hypothesized that the transsulfuration pathway plays essential roles in the development of cardiac adaptive responses against ischemia, and investigated the roles of homocysteine, HS, and transsulfuration enzymes in fasting-induced cardioprotection against IR injury utilizing hyperhomocysteinemic Cbs−/− and Cth−/− mice. Langendorff-perfused hearts were subjected to 25-min global ischemia, followed by 60-min reperfusion. Two-day fasting ameliorated left ventricular dysfunction after reperfusion via propargylglycine- and glibenclamide-sensitive pathways in wild-type mice but not in Cbs−/− or Cth−/− mice, although fasting induced cardiac expression of several Nrf2 target antioxidant genes in both wild-type and Cth−/− mice. Intraperitoneal administration of sodium hydrosulfide (a HS donor) at 24 h prior to IR improved myocardial recovery in wild-type mice but not in Cth−/− or high-methionine-diet-fed (thus intermediately hyperhomocysteinemic) wild-type mice. Quantitative analysis of reactive sulfur species using monobromobimane derivatization methods revealed that homocysteine efficiently captures HS to form homocysteine persulfide in the hearts as well as in the in vitro reactions. Here we propose a novel molecular and pathophysiological basis for hyperhomocysteinemia; excessive circulatory homocysteine interferes with HS-related cardioprotection against IR injury by capturing endogenous HS to form homocysteine persulfide.

Key Message

  • Two-day fasting of mice ameliorates ischemia/reperfusion injury in Langendorff hearts.

  • H2S-producing enzymes, CBS and CTH, are essential in fasting-induced cardioprotection.

  • Administration of a H2S donor (NaHS) confers cardioprotection against IR injury.

  • NaHS effects are absent in Cth−/−, Cbs−/−, and dietary hyperhomocysteinemic mice.

  • Homocysteine captures cardioprotective HS to form homocysteine persulfide.


Fasting Homocysteine persulfide Hydrogen sulfide anion (HSIschemia/reperfusion injury Transsulfuration Preconditioning 



This study was supported by Grants-in-Aid for Scientific Research [25460072 and 25220103 to I.I., 25461116 to K.S., 24651265 to T.H.] and the Program for Strategic Research Foundation at Private Universities (2011–2015) to I.I. from the MEXT of Japan; Keio Univ. Special Grant-in-Aid for Innovative Collaborative Research Project to I.I.; and ERATO Suematsu Gas Biology Project to M.Su. from JST. M.Su. was the leader of CREST, JST for FY2014.

Conflict of interest

The authors have nothing to disclose.

Supplementary material

109_2015_1271_MOESM1_ESM.pdf (455 kb)
ESM 1(PDF 454 kb)


  1. 1.
    Kajimura M, Fukuda R, Bateman RM, Yamamoto T, Suematsu M (2010) Interactions of multiple gas-transducing systems: hallmarks and uncertainties of CO, NO, and H2S gas biology. Antioxid Redox Signal 13:157–192PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Kimura H, Shibuya N, Kimura Y (2012) Hydrogen sulfide is a signaling molecule and a cytoprotectant. Antioxid Redox Signal 17:45–57PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Polhemus DJ, Lefer DJ (2014) Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ Res 114:730–737PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Elrod JW, Calvert JW, Morrison J, Doeller JE, Kraus DW, Tao L, Jiao X, Scalia R, Kiss L, Szabo C et al (2007) Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci U S A 104:15560–15565PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Nishida M, Sawa T, Kitajima N, Ono K, Inoue H, Ihara H, Motohashi H, Yamamoto M, Suematsu M, Kurose H et al (2012) Hydrogen sulfide anion regulates redox signaling via electrophile sulfhydration. Nat Chem Biol 8:714–724PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Calvert JW, Elston M, Nicholson CK, Gundewar S, Jha S, Elrod JW, Ramachandran A, Lefer DJ (2010) Genetic and pharmacologic hydrogen sulfide therapy attenuates ischemia-induced heart failure in mice. Circulation 122:11–19PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Ida T, Sawa T, Ihara H, Tsuchiya Y, Watanabe Y, Kumagai Y, Suematsu M, Motohashi H, Fujii S, Matsunaga T et al (2014) Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc Natl Acad Sci U S A 111:7606–7611PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Ohmura M, Hishiki T, Yamamoto T, Nakanishi T, Kubo A, Tsuchihashi K, Tamada M, Toue S, Kabe Y, Saya H et al (2014) Impacts of CD44 knockdown in cancer cells on tumor and host metabolic systems revealed by quantitative imaging mass spectrometry. Nitric Oxide. doi:10.1016/j.niox.2014.11.005 PubMedGoogle Scholar
  9. 9.
    Ono K, Akaike T, Sawa T, Kumagai Y, Wink DA, Tantillo DJ, Hobbs AJ, Nagy P, Xian M, Lin J et al (2014) Redox chemistry and chemical biology of HS, hydropersulfides, and derived species: implications of their possible biological activity and utility. Free Radic Biol Med 77:82–94PubMedCrossRefGoogle Scholar
  10. 10.
    Stipanuk MH (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24:539–577PubMedCrossRefGoogle Scholar
  11. 11.
    Watanabe M, Osada J, Aratani Y, Kluckman K, Reddick R, Malinow MR, Maeda N (1995) Mice deficient in cystathionine beta-synthase: animal models for mild and severe homocyst(e)inemia. Proc Natl Acad Sci U S A 92:1585–1589PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Akahoshi N, Kobayashi C, Ishizaki Y, Izumi T, Himi T, Suematsu M, Ishii I (2008) Genetic background conversion ameliorates semi-lethality and permits behavioral analyses in cystathionine beta-synthase-deficient mice, an animal model for hyperhomocysteinemia. Hum Mol Genet 17:1994–2005PubMedCrossRefGoogle Scholar
  13. 13.
    Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S et al (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322:587–590PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Ishii I, Akahoshi N, Yamada H, Nakano S, Izumi T, Suematsu M (2010) Cystathionine gamma-lyase-deficient mice require dietary cysteine to protect against acute lethal myopathy and oxidative injury. J Biol Chem 285:26358–26368PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Lentz SR (2005) Mechanisms of homocysteine-induced atherothrombosis. J Thromb Haemost 3:1646–1654PubMedCrossRefGoogle Scholar
  16. 16.
    Chang L, Geng B, Yu F, Zhao J, Jiang H, Du J, Tang C (2008) Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats. Amino Acids 34:573–585PubMedCrossRefGoogle Scholar
  17. 17.
    Yamada H, Akahoshi N, Kamata S, Hagiya Y, Hishiki T, Nagahata Y, Matsuura T, Takano N, Mori M, Ishizaki Y et al (2012) Methionine excess in diet induces acute lethal hepatitis in mice lacking cystathionine gamma-lyase, an animal model of cystathioninuria. Free Radic Biol Med 52:1716–1726PubMedCrossRefGoogle Scholar
  18. 18.
    Hagiya Y, Kamata S, Mitsuoka S, Okada N, Yoshida S, Yamamoto J, Ohkubo R, Abiko Y, Yamada H, Akahoshi N et al (2015) Hemizygosity of transsulfuration genes confers increased vulnerability against acetaminophen-induced hepatotoxicity in mice. Toxicol Appl Pharmacol 282:195–206PubMedCrossRefGoogle Scholar
  19. 19.
    Shinmura K, Tamaki K, Bolli R (2008) Impact of 6-mo caloric restriction on myocardial ischemic tolerance: possible involvement of nitric oxide-dependent increase in nuclear Sirt1. Am J Physiol Heart Circ Physiol 295:H2348–H2355PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Ahmet (2005) Cardioprotection by intermittent fasting in rats. Circulation 112:3115–3121PubMedCrossRefGoogle Scholar
  21. 21.
    Shinmura K, Tamaki K, Ito K, Yan X, Yamamoto T, Katsumata Y, Matsuhashi T, Sano M, Fukuda K, Suematsu M et al (2015) Indispensable role of endothelial nitric oxide synthase in caloric restriction-induced cardioprotection against ischemia/reperfusion injury. Am J Physiol Heart Circ Physiol. doi:10.1152/ajpheart.00333.2014 PubMedGoogle Scholar
  22. 22.
    Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK, Barodka VM, Gazi FK, Barrow RK, Wang R et al (2011) Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 109:1259–1268PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Shinmura K, Tamaki K, Bolli R (2005) Short-term caloric restriction improves ischemic tolerance independent of opening of ATP-sensitive K+ channels in both young and aged hearts. J Mol Cell Cardiol 39:285–296PubMedCrossRefGoogle Scholar
  24. 24.
    Shinmura K, Tamaki K, Saito K, Nakano Y, Tobe T, Bolli R (2007) Cardioprotective effects of short-term caloric restriction are mediated by adiponectin via activation of AMP-activated protein kinase. Circulation 116:2809–2817PubMedCrossRefGoogle Scholar
  25. 25.
    Schneider CA, Taegtmeyer H (1991) Fasting in vivo delays myocardial cell damage after brief periods of ischemia in the isolated working rat heart. Circ Res 68:1045–1050PubMedCrossRefGoogle Scholar
  26. 26.
    Ramasamy R, Liu H, Cherednichenko G, Schaefer S (2001) Fasting limits the increase in intracellular calcium during ischemia in isolated rat hearts. Basic Res Cardiol 96:463–470PubMedCrossRefGoogle Scholar
  27. 27.
    Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377:239–242PubMedCrossRefGoogle Scholar
  28. 28.
    Namekata K, Enokido Y, Ishii I, Nagai Y, Harada T, Kimura H (2004) Abnormal lipid metabolism in cystathionine beta-synthase-deficient mice, an animal model for hyperhomocysteinemia. J Biol Chem 279:52961–52969PubMedCrossRefGoogle Scholar
  29. 29.
    Akahoshi N, Kamata S, Kubota M, Hishiki T, Nagahata Y, Matsuura T, Yamazaki C, Yoshida Y, Yamada H, Ishizaki Y et al (2014) Neutral aminoaciduria in cystathionine beta-synthase-deficient mice, an animal model of homocystinuria. Am J Physiol Ren Physiol 306:F1462–F1476CrossRefGoogle Scholar
  30. 30.
    Morikawa T, Kajimura M, Nakamura T, Hishiki T, Nakanishi T, Yukutake Y, Nagahata Y, Ishikawa M, Hattori K, Takenouchi T et al (2012) Hypoxic regulation of the cerebral microcirculation is mediated by a carbon monoxide-sensitive hydrogen sulfide pathway. Proc Natl Acad Sci U S A 109:1293–1298PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Kamata S, Yamamoto J, Kamijo K, Ochiai T, Morita T, Yoshitomi Y, Hagiya Y, Kubota M, Ohkubo R, Kawaguchi M et al (2014) Dietary deprivation of each essential amino acid induces differential systemic adaptive responses in mice. Mol Nutr Food Res 58:1309–1321PubMedCrossRefGoogle Scholar
  32. 32.
    Gupta S, Kruger WD (2011) Cystathionine beta-synthase deficiency causes fat loss in mice. PLoS One 6:e27598PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Mudd SH, Levy HL, Kraus JP (2001) Disorders of transsulfuration. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease, 8th edn. MaGraw-Hill, New York, pp 2007–2056Google Scholar
  34. 34.
    Ma Q (2013) Role of Nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426PubMedCrossRefGoogle Scholar
  35. 35.
    Hourihan JM, Kenna JG, Hayes JD (2013) The gasotransmitter hydrogen sulfide induces Nrf2-target genes by inactivating the Keap1 ubiquitin ligase substrate adaptor through formation of a disulfide bond between Cys-226 and Cys-613. Antioxid Redox Signal 19:465–481PubMedCrossRefGoogle Scholar
  36. 36.
    Ishii I, Akahoshi N, Yu XN, Kobayashi Y, Namekata K, Komaki G, Kimura H (2004) Murine cystathionine gamma-lyase: complete cDNA and genomic sequences, promoter activity, tissue distribution and developmental expression. Biochem J 381:113–123PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Oyama J, Blais C Jr, Liu X, Pu M, Kobzik L, Kelly RA, Bourcier T (2004) Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation 109:784–789PubMedCrossRefGoogle Scholar
  38. 38.
    Toyoda Y, Friehs I, Parker RA, Levitsky S, McCully JD (2000) Differential role of sarcolemmal and mitochondrial KATP channels in adenosine-enhanced ischemic preconditioning. Am J Physiol Heart Circ Physiol 279:H2694–H2703PubMedGoogle Scholar
  39. 39.
    Fujii K, Sakuragawa T, Kashiba M, Sugiura Y, Kondo M, Maruyama K, Goda N, Nimura Y, Suematsu M (2005) Hydrogen sulfide as an endogenous modulator of biliary bicarbonate excretion in the rat liver. Antioxid Redox Signal 7:788–794PubMedCrossRefGoogle Scholar
  40. 40.
    Liu YH, Lu M, Hu LF, Wong PT, Webb GD, Bian JS (2012) Hydrogen sulfide in the mammalian cardiovascular system. Antioxid Redox Signal 17:141–185PubMedCrossRefGoogle Scholar
  41. 41.
    Hogg N (1999) The effect of cyst(e)ine on the auto-oxidation of homocysteine. Free Radic Biol Med 27:28–33PubMedCrossRefGoogle Scholar
  42. 42.
    Werstuck GH, Lentz SR, Dayal S, Hossain GS, Sood SK, Shi YY, Zhou J, Maeda N, Krisans SK, Malinow MR et al (2001) Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest 107:1263–1273PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Choumenkovitch SF, Selhub J, Bagley PJ, Maeda N, Nadeau MR, Smith DE, Choi SW (2002) In the cystathionine beta-synthase knockout mouse, elevations in total plasma homocysteine increase tissue S-adenosylhomocysteine, but responses of S-adenosylmethionine and DNA methylation are tissue specific. J Nutr 132:2157–2160PubMedGoogle Scholar
  44. 44.
    Yamamoto T, Takano N, Ishiwata K, Ohmura M, Nagahata Y, Matsuura T, Kamata A, Sakamoto K, Nakanishi T, Kubo A et al (2014) Reduced methylation of PFKFB3 in cancer cells shunts glucose towards the pentose phosphate pathway. Nat Commun 5:3480PubMedCentralPubMedGoogle Scholar
  45. 45.
    Jakubowski H (2007) The molecular basis of homocysteine thiolactone-mediated vascular disease. Clin Chem Lab Med 45:1704–1716PubMedCrossRefGoogle Scholar
  46. 46.
    Hausenloy DJ, Erik Botker H, Condorelli G, Ferdinandy P, Garcia-Dorado D, Heusch G, Lecour S, van Laake LW, Madonna R, Ruiz-Meana M et al (2013) Translating cardioprotection for patient benefit: position paper from the working group of cellular biology of the heart of the European society of cardiology. Cardiovasc Res 98:7–27PubMedCrossRefGoogle Scholar
  47. 47.
    Longo VD, Mattson MP (2014) Fasting: molecular mechanisms and clinical applications. Cell Metab 19:181–192PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Ranucci M, Ballotta A, Frigiola A, Boncilli A, Brozzi S, Costa E, Mehta RH (2009) Pre-operative homocysteine levels and morbidity and mortality following cardiac surgery. Eur Heart J 30:995–1004PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Shintaro Nakano
    • 1
  • Isao Ishii
    • 2
  • Ken Shinmura
    • 3
  • Kayoko Tamaki
    • 3
    • 4
  • Takako Hishiki
    • 1
    • 4
  • Noriyuki Akahoshi
    • 4
  • Tomoaki Ida
    • 5
  • Tsuyoshi Nakanishi
    • 6
  • Shotaro Kamata
    • 2
  • Yoshito Kumagai
    • 7
  • Takaaki Akaike
    • 5
  • Keiichi Fukuda
    • 8
  • Motoaki Sano
    • 8
  • Makoto Suematsu
    • 1
    • 4
  1. 1.Department of BiochemistryKeio University School of MedicineTokyoJapan
  2. 2.Department of BiochemistryKeio University School of Pharmaceutical SciencesMinato-kuJapan
  3. 3.Department of Geriatric MedicineKeio University School of MedicineTokyoJapan
  4. 4.Suematsu Gas Biology Project, ERATOJSTTokyoJapan
  5. 5.Department of Environmental Health Sciences and Molecular ToxicologyTohoku University Graduate School of MedicineSendaiJapan
  6. 6.MS Business UnitShimadzu CorporationKyotoJapan
  7. 7.Environmental Biology Laboratory, School of MedicineUniversity of TsukubaIbarakiJapan
  8. 8.Department of CardiologyKeio University School of MedicineTokyoJapan

Personalised recommendations