Advertisement

Journal of Molecular Medicine

, Volume 93, Issue 5, pp 489–498 | Cite as

Hfe and Hjv exhibit overlapping functions for iron signaling to hepcidin

  • Patricia Kent
  • Nicole Wilkinson
  • Marco Constante
  • Carine Fillebeen
  • Konstantinos Gkouvatsos
  • John Wagner
  • Marzell Buffler
  • Christiane Becker
  • Klaus Schümann
  • Manuela M. Santos
  • Kostas PantopoulosEmail author
Original Article

Abstract

Functional inactivation of HFE or hemojuvelin (HJV) is causatively linked to adult or juvenile hereditary hemochromatosis, respectively. Systemic iron overload results from inadequate expression of hepcidin, the iron regulatory hormone. While HJV regulates hepcidin by amplifying bone morphogenetic protein (BMP) signaling, the role of HFE in the hepcidin pathway remains incompletely understood. We investigated the pathophysiological implications of combined Hfe and Hjv ablation in mice. Isogenic Hfe / and Hjv / mice were crossed to generate double Hfe / Hjv / progeny. Wild-type control and mutant mice of all genotypes were analyzed for serum, hepatic, and splenic iron content, expression of iron metabolism proteins, and expression of hepcidin and Smad signaling in the liver, in response to a standard or an iron-enriched diet. As expected, Hfe / and Hjv / mice developed relatively mild or severe iron overload, respectively, which corresponded to the degree of hepcidin inhibition. The double Hfe / Hjv / mice exhibited an indistinguishable phenotype to single Hjv / counterparts with regard to suppression of hepcidin, serum and hepatic iron overload, splenic iron deficiency, tissue iron metabolism, and Smad signaling, under both dietary regimens. We conclude that the hemochromatotic phenotype caused by disruption of Hjv is not further aggravated by combined Hfe/Hjv deficiency. Our results provide genetic evidence that Hfe and Hjv operate in the same pathway for the regulation of hepcidin expression and iron metabolism.

Key messages

  • Combined disruption of Hfe and Hjv phenocopies single Hjv deficiency.

  • Single Hjv/ and double Hfe/Hjv/ mice exhibit comparable iron overload.

  • Hfe and Hjv regulate hepcidin via the same pathway.

Keywords

Hemochromatosis Iron overload BMP/SMAD 

Notes

Acknowledgments

This work was supported by a grant from the Canadian Institutes for Health Research (MOP-86514). KP and MMS were recipients of Chercheur National and Chercheur Senior career awards, respectively, from the Fonds de la Recherche en Santé du Quebéc (FRSQ). KG was supported by doctoral awards from the J. Latsis and A. Onassis Public Benefit Foundations and from FRSQ.

Disclosure

The authors declare no competing financial interests.

Supplementary material

109_2015_1253_MOESM1_ESM.pdf (493 kb)
ESM 1 (PDF 492 kb)

References

  1. 1.
    Pietrangelo A (2010) Hereditary hemochromatosis: pathogenesis, diagnosis, and treatment. Gastroenterology 139:393–408CrossRefPubMedGoogle Scholar
  2. 2.
    Ganz T (2013) Systemic iron homeostasis. Physiol Rev 93:1721–1741CrossRefPubMedGoogle Scholar
  3. 3.
    Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A, Dormishian F, Domingo R Jr, Ellis MC, Fullan A et al (1996) A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 13:399–408CrossRefPubMedGoogle Scholar
  4. 4.
    Fleming RE, Feng Q, Britton RS (2011) Knockout mouse models of iron homeostasis. Annu Rev Nutr 31:117–137CrossRefPubMedGoogle Scholar
  5. 5.
    Papanikolaou G, Samuels ME, Ludwig EH, MacDonald ML, Franchini PL, Dube MP, Andres L, MacFarlane J, Sakellaropoulos N, Politou M et al (2004) Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. Nat Genet 36:77–82CrossRefPubMedGoogle Scholar
  6. 6.
    Core AB, Canali S, Babitt JL (2014) Hemojuvelin and bone morphogenetic protein (BMP) signaling in iron homeostasis. Front Pharmacol 5:104CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Vujic M (2014) Molecular basis of HFE-hemochromatosis. Front Pharmacol 5:42PubMedCentralPubMedGoogle Scholar
  8. 8.
    Vujic Spasic M, Kiss J, Herrmann T, Galy B, Martinache S, Stolte J, Grone HJ, Stremmel W, Hentze MW, Muckenthaler MU (2008) Hfe acts in hepatocytes to prevent hemochromatosis. Cell Metab 7:173–178CrossRefPubMedGoogle Scholar
  9. 9.
    Gkouvatsos K, Wagner J, Papanikolaou G, Sebastiani G, Pantopoulos K (2011) Conditional disruption of mouse Hfe2 gene: maintenance of systemic iron homeostasis requires hepatic but not skeletal muscle hemojuvelin. Hepatology 54:1800–1807CrossRefPubMedGoogle Scholar
  10. 10.
    Chen W, Huang FW, de Renshaw TB, Andrews NC (2011) Skeletal muscle hemojuvelin is dispensable for systemic iron homeostasis. Blood 117:6319–6325CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Feder JN, Penny DM, Irrinki A, Lee VK, Lebron JA, Watson N, Tsuchihashi Z, Sigal E, Bjorkman PJ, Schatzman RC (1998) The hemochromatosis gene product complexes with the transferrin receptor and lowers its affinity for ligand binding. Proc Natl Acad Sci U S A 95:1472–1477CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Schmidt PJ, Toran PT, Giannetti AM, Bjorkman PJ, Andrews NC (2008) The transferrin receptor modulates Hfe-dependent regulation of hepcidin expression. Cell Metab 7:205–214CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Goswami T, Andrews NC (2006) Hereditary hemochromatosis protein, HFE, interaction with transferrin receptor 2 suggests a molecular mechanism for mammalian iron sensing. J Biol Chem 281:28494–28498CrossRefPubMedGoogle Scholar
  14. 14.
    Schmidt PJ, Fleming MD (2012) Transgenic HFE-dependent induction of hepcidin in mice does not require transferrin receptor-2. Am J Hematol 87:588–595CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Rishi G, Crampton EM, Wallace DF, Subramaniam VN (2013) In situ proximity ligation assays indicate that hemochromatosis proteins Hfe and transferrin receptor 2 (Tfr2) do not interact. PLoS ONE 8:e77267CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Gao J, Chen J, Kramer M, Tsukamoto H, Zhang AS, Enns CA (2009) Interaction of the hereditary hemochromatosis protein HFE with transferrin receptor 2 is required for transferrin-induced hepcidin expression. Cell Metab 9:217–227CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Wallace DF, Summerville L, Crampton EM, Frazer DM, Anderson GJ, Subramaniam VN (2009) Combined deletion of Hfe and transferrin receptor 2 in mice leads to marked dysregulation of hepcidin and iron overload. Hepatology 50:1992–2000CrossRefPubMedGoogle Scholar
  18. 18.
    Pietrangelo A, Caleffi A, Henrion J, Ferrara F, Corradini E, Kulaksiz H, Stremmel W, Andreone P, Garuti C (2005) Juvenile hemochromatosis associated with pathogenic mutations of adult hemochromatosis genes. Gastroenterology 128:470–479CrossRefPubMedGoogle Scholar
  19. 19.
    Babitt JL, Huang FW, Wrighting DM, Xia Y, Sidis Y, Samad TA, Campagna JA, Chung RT, Schneyer AL, Woolf CJ et al (2006) Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet 38:531–539CrossRefPubMedGoogle Scholar
  20. 20.
    Gkouvatsos K, Fillebeen C, Daba A, Wagner J, Sebastiani G, Pantopoulos K (2014) Iron-dependent regulation of hepcidin in Hjv-/- mice: evidence that hemojuvelin is dispensable for sensing body iron levels. PLoS One 9:e85530CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Ryan JD, Ryan E, Fabre A, Lawless MW, Crowe J (2010) Defective bone morphogenic protein signaling underlies hepcidin deficiency in HFE hereditary hemochromatosis. Hepatology 52:1266–1273CrossRefPubMedGoogle Scholar
  22. 22.
    Bolondi G, Garuti C, Corradini E, Zoller H, Vogel W, Finkenstedt A, Babitt JL, Lin HY, Pietrangelo A (2010) Altered hepatic BMP signaling pathway in human HFE hemochromatosis. Blood Cells Mol Dis 45:308–312CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Kautz L, Meynard D, Besson-Fournier C, Darnaud V, Al Saati T, Coppin H, Roth MP (2009) BMP/Smad signaling is not enhanced in Hfe-deficient mice despite increased Bmp6 expression. Blood 114:2515–2520CrossRefPubMedGoogle Scholar
  24. 24.
    Corradini E, Garuti C, Montosi G, Ventura P, Andriopoulos B Jr, Lin HY, Pietrangelo A, Babitt JL (2009) Bone morphogenetic protein signaling is impaired in an HFE knockout mouse model of hemochromatosis. Gastroenterology 137:1489–1497CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Constante M, Jiang W, Wang D, Raymond VA, Bilodeau M, Santos MM (2006) Distinct requirements for Hfe in basal and induced hepcidin levels in iron overload and inflammation. Am J Physiol Gastrointest Liver Physiol 291:G229–G237CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622CrossRefPubMedGoogle Scholar
  27. 27.
    Schümann K, Herbach N, Kerling C, Seifert M, Fillebeen C, Prysch I, Reich J, Weiss G, Pantopoulos K (2010) Iron absorption and distribution in TNFΔΑRE/+ mice, a model of chronic inflammation. J Trace Elem Med Biol 24:58–66CrossRefPubMedGoogle Scholar
  28. 28.
    Fleming RE, Holden CC, Tomatsu S, Waheed A, Brunt EM, Britton RS, Bacon BR, Roopenian DC, Sly WS (2001) Mouse strain differences determine severity of iron accumulation in Hfe knockout model of hereditary hemochromatosis. Proc Natl Acad Sci U S A 98:2707–2711CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Wang J, Pantopoulos K (2011) Regulation of cellular iron metabolism. Biochem J 434:365–381CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Ramos E, Kautz L, Rodriguez R, Hansen M, Gabayan V, Ginzburg Y, Roth MP, Nemeth E, Ganz T (2011) Evidence for distinct pathways of hepcidin regulation by acute and chronic iron loading in mice. Hepatology 53:1333–1341CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Corradini E, Schmidt PJ, Meynard D, Garuti C, Montosi G, Chen S, Vukicevic S, Pietrangelo A, Lin HY, Babitt JL (2010) BMP6 treatment compensates for the molecular defect and ameliorates hemochromatosis in Hfe knockout mice. Gastroenterology 139:1721–1729CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Poli M, Luscieti S, Gandini V, Maccarinelli F, Finazzi D, Silvestri L, Roetto A, Arosio P (2010) Transferrin receptor 2 and HFE regulate furin expression via mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/Erk) signaling. Implications for transferrin-dependent hepcidin regulation. Haematologica 95:1832–1840CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Ramey G, Deschemin JC, Vaulont S (2009) Cross-talk between the mitogen activated protein kinase and bone morphogenetic protein/hemojuvelin pathways is required for the induction of hepcidin by holotransferrin in primary mouse hepatocytes. Haematologica 94:765–772CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Schmidt PJ, Andrews NC, Fleming MD (2010) Hepcidin induction by transgenic overexpression of Hfe does not require the Hfe cytoplasmic tail, but does require hemojuvelin. Blood 116:5679–5687CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Wu XG, Wang Y, Wu Q, Cheng WH, Liu W, Zhao Y, Mayeur C, Schmidt PJ, Yu PB, Wang F et al (2014) HFE interacts with the BMP type I receptor ALK3 to regulate hepcidin expression. Blood 124:1335–1343CrossRefPubMedGoogle Scholar
  36. 36.
    D’Alessio F, Hentze MW, Muckenthaler MU (2012) The hemochromatosis proteins HFE, TfR2 and HJV form a membrane-associated protein complex for hepcidin regulation. J Hepatol 57:1052–1060CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Patricia Kent
    • 1
  • Nicole Wilkinson
    • 1
  • Marco Constante
    • 1
    • 2
  • Carine Fillebeen
    • 1
  • Konstantinos Gkouvatsos
    • 1
  • John Wagner
    • 1
  • Marzell Buffler
    • 3
  • Christiane Becker
    • 3
  • Klaus Schümann
    • 4
  • Manuela M. Santos
    • 2
  • Kostas Pantopoulos
    • 1
    Email author
  1. 1.Lady Davis Institute for Medical Research, Jewish General Hospital, and Department of MedicineMcGill UniversityMontrealCanada
  2. 2.Centre de Recherche, Centre Hospitalier de l’Université de Montréal (CHUM), and Département de MédecineUniversité de MontréalMontrealCanada
  3. 3.Animal Nutrition UnitTechnische Universität MünchenFreising-WeihenstephanGermany
  4. 4.Molecular Nutrition Unit, Research Center for Nutrition and Food ScienceTechnische Universität MünchenFreising-WeihenstephanGermany

Personalised recommendations