Journal of Molecular Medicine

, Volume 93, Issue 5, pp 573–584 | Cite as

Skeletal muscle proteomic signature and metabolic impairment in pulmonary hypertension

  • Simon Malenfant
  • François Potus
  • Frédéric Fournier
  • Sandra Breuils-Bonnet
  • Aude Pflieger
  • Sylvie Bourassa
  • Ève Tremblay
  • Benjamin Nehmé
  • Arnaud Droit
  • Sébastien Bonnet
  • Steeve Provencher
Original Article

Abstract

Exercise limitation comes from a close interaction between cardiovascular and skeletal muscle impairments. To better understand the implication of possible peripheral oxidative metabolism dysfunction, we studied the proteomic signature of skeletal muscle in pulmonary arterial hypertension (PAH). Eight idiopathic PAH patients and eight matched healthy sedentary subjects were evaluated for exercise capacity, skeletal muscle proteomic profile, metabolism, and mitochondrial function. Skeletal muscle proteins were extracted, and fractioned peptides were tagged using an iTRAQ protocol. Proteomic analyses have documented a total of 9 downregulated proteins in PAH skeletal muscles and 10 upregulated proteins compared to healthy subjects. Most of the downregulated proteins were related to mitochondrial structure and function. Focusing on skeletal muscle metabolism and mitochondrial health, PAH patients presented a decreased expression of oxidative enzymes (pyruvate dehydrogenase, p < 0.01) and an increased expression of glycolytic enzymes (lactate dehydrogenase activity, p < 0.05). These findings were supported by abnormal mitochondrial morphology on electronic microscopy, lower citrate synthase activity (p < 0.01) and lower expression of the transcription factor A of the mitochondria (p < 0.05), confirming a more glycolytic metabolism in PAH skeletal muscles. We provide evidences that impaired mitochondrial and metabolic functions found in the lungs and the right ventricle are also present in skeletal muscles of patients.

Key message

• Proteomic and metabolic analysis show abnormal oxidative metabolism in PAH skeletal muscle.

• EM of PAH patients reveals abnormal mitochondrial structure and distribution.

• Abnormal mitochondrial health and function contribute to exercise impairments of PAH.

• PAH may be considered a vascular affliction of heart and lungs with major impact on peripheral muscles.

Keywords

Pulmonary hypertension Skeletal muscle Mitochondrial metabolism Proteomic Exercise capacity 

Supplementary material

109_2014_1244_MOESM1_ESM.pdf (556 kb)
ESM 1(PDF 556 kb)

References

  1. 1.
    Hoeper MM, Bogaard HJ, Condliffe R, Frantz R, Khanna D, Kurzyna M, Langleben D, Manes A, Satoh T, Torres F et al (2013) Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol 62:D42–D50CrossRefPubMedGoogle Scholar
  2. 2.
    Mainguy V, Provencher S, Maltais F, Malenfant S, Saey D (2011) Assessment of daily life physical activities in pulmonary arterial hypertension. PLoS One 6:e27993CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Rival G, Lacasse Y, Martin S, Bonnet S, Provencher S (2014) Effect of pulmonary arterial hypertension specific therapies on health-related quality of life: a systematic review. Chest 146:686–708CrossRefPubMedGoogle Scholar
  4. 4.
    Pugh ME, Buchowski MS, Robbins IM, Newman JH, Hemnes AR (2012) Physical activity limitation as measured by accelerometry in pulmonary arterial hypertension. Chest 142:1391–1398CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Mainguy V, Maltais F, Saey D, Gagnon P, Martel S, Simon M, Provencher S (2010) Peripheral muscle dysfunction in idiopathic pulmonary arterial hypertension. Thorax 65:113–117CrossRefPubMedGoogle Scholar
  6. 6.
    Potus F, Malenfant S, Graydon C, Mainguy V, Tremblay E, Breuils-Bonnet S, Ribeiro F, Porlier A, Maltais F, Bonnet S et al (2014) Impaired angiogenesis and peripheral muscle microcirculation loss contribute to exercise intolerance in pulmonary arterial hypertension. Am J Respir Crit Care Med 190:318–328PubMedGoogle Scholar
  7. 7.
    Sutendra G, Michelakis ED (2014) The metabolic basis of pulmonary arterial hypertension. Cell Metab 19:558–573CrossRefPubMedGoogle Scholar
  8. 8.
    Courboulin A, Paulin R, Giguère NJ, Saksouk N, Perreault T, Meloche J, Paquet ER, Biardel S, Provencher S, Côté J et al (2011) Role for miR-204 in human pulmonary arterial hypertension. J Exp Med 208:535–548CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Dromparis P, Paulin R, Stenson TH, Haromy A, Sutendra G, Michelakis ED (2013) Attenuating endoplasmic reticulum stress as a novel therapeutic strategy in pulmonary hypertension. Circulation 127:115–125CrossRefPubMedGoogle Scholar
  10. 10.
    Paulin R, Dromparis P, Sutendra G, Gurtu V, Zervopoulos S, Bowers L, Haromy A, Webster L, Provencher S, Bonnet S et al (2014) Sirtuin 3 deficiency is associated with inhibited mitochondrial function and pulmonary arterial hypertension in rodents and humans. Cell Metab 20:827–839CrossRefPubMedGoogle Scholar
  11. 11.
    Piao L, Fang Y-H, Cadete VJJ, Wietholt C, Urboniene D, Toth PT, Marsboom G, Zhang HJ, Haber I, Rehman J et al (2010) The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle. J Mol Med 88:47–60CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Sutendra G, Dromparis P, Paulin R, Zervopoulos S, Haromy A, Nagendran J, Michelakis ED (2013) A metabolic remodeling in right ventricular hypertrophy is associated with decreased angiogenesis and a transition from a compensated to a decompensated state in pulmonary hypertension. J Mol Med 91:1315–1327CrossRefPubMedGoogle Scholar
  13. 13.
    Enache I, Charles AL, Bouitbir J, Favret F, Zoll J, Metzger D, Oswald-Mammosser M, Geny B, Charloux A (2013) Skeletal muscle mitochondrial dysfunction precedes right ventricular impairment in experimental pulmonary hypertension. Mol Cell Biochem 373:161–170CrossRefPubMedGoogle Scholar
  14. 14.
    Mabuchi K, Sréter FA (1980) Actomyosin ATPase. II. Fiber typing by histochemical ATPase reaction. Muscle Nerve 3:233–239CrossRefPubMedGoogle Scholar
  15. 15.
    Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Stride N, Schroder HD, Boushel R, Helge JW, Dela F et al (2012) Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol (Lond) 590:3349–3360CrossRefGoogle Scholar
  16. 16.
    Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M, Narasimhan S, Kane DW, Reinhold WC, Lababidi S et al (2003) GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol 4:R28CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449CrossRefPubMedGoogle Scholar
  18. 18.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Bonnet S, Michelakis ED, Porter C, Andrade-Navarro M, Thebaud B, Breuils-Bonnet S, Haromy A, Harry G, Moudgil R, McMurtry S et al (2006) An abnormal mitochondrial-hypoxia inducible factor-1 alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats—similarities to human pulmonary arterial hypertension. Circulation 113:2630–2641CrossRefPubMedGoogle Scholar
  20. 20.
    Archer SL (2013) Mitochondrial dynamics—mitochondrial fission and fusion in human diseases. N Engl J Med 369:2236–2251CrossRefPubMedGoogle Scholar
  21. 21.
    Ryan JJ, Marsboom G, Fang Y-H, Toth PT, Morrow E, Luo N, Piao L, Hong Z, Ericson K, Zhang HJ et al (2013) PGC1α-mediated mitofusin-2 deficiency in female rats and humans with pulmonary arterial hypertension. Am J Respir Crit Care Med 187:865–878CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Ullrich M, Liang V, Chew YL, Banister S, Song X, Zaw T, Lam H, Berber S, Kassiou M, Nicholas HR et al (2014) Bio-orthogonal labeling as a tool to visualize and identify newly synthesized proteins in Caenorhabditis elegans. Nat Protoc 9:2237–2255CrossRefPubMedGoogle Scholar
  23. 23.
    Marsboom G, Wietholt C, Haney CR, Toth PT, Ryan JJ, Morrow E, Thenappan T, Bache-Wiig P, Piao L, Paul J et al (2012) Lung 18 F-fluorodeoxyglucose positron emission tomography for diagnosis and monitoring of pulmonary arterial hypertension. Am J Respir Crit Care Med 185:670–679CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Piao L, Fang Y-H, Parikh K, Ryan JJ, Toth PT, Archer SL (2013) Cardiac glutaminolysis: a maladaptive cancer metabolism pathway in the right ventricle in pulmonary hypertension. J Mol Med 91:1185–1197CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Rogers MA, Hagberg JM, Martin WH, Ehsani AA, Holloszy JO (1990) Decline in VO2max with aging in master athletes and sedentary men. J Appl Physiol 68:2195–2199PubMedGoogle Scholar
  26. 26.
    Chance B, Leigh JS, Clark BJ, Maris J, Kent J, Nioka S, Smith D (1985) Control of oxidative metabolism and oxygen delivery in human skeletal muscle: a steady-state analysis of the work/energy cost transfer function. Proc Natl Acad Sci U S A 82:8384–8388CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Provencher S, Chemla D, Hervé P, Sitbon O, Humbert M, Simonneau G (2006) Heart rate responses during the 6-minute walk test in pulmonary arterial hypertension. Eur Respir J 27:114–120CrossRefPubMedGoogle Scholar
  28. 28.
    Groepenhoff H, Holverda S, Marcus JT, Postmus PE, Boonstra A, Vonk-Noordegraaf A (2007) Stroke volume response during exercise measured by acetylene uptake and MRI. Physiol Meas 28:1–11CrossRefPubMedGoogle Scholar
  29. 29.
    Tolle J, Waxman A, Systrom D (2008) Impaired systemic oxygen extraction at maximum exercise in pulmonary hypertension. Med Sci Sports Exerc 40:3–8CrossRefPubMedGoogle Scholar
  30. 30.
    De Bock K, Georgiadou M, Carmeliet P (2013) Role of endothelial cell metabolism in vessel sprouting. Cell Metab 18:634–647CrossRefPubMedGoogle Scholar
  31. 31.
    Tomasetti M, Nocchi L, Staffolani S, Manzella N, Amati M, Goodwin J, Kluckova K, Nguyen M, Strafella E, Bajzikova M et al (2014) MicroRNA-126 suppresses mesothelioma malignancy by targeting IRS1 and interfering with the mitochondrial function. Antioxid Redox Signal 21:2109–2125CrossRefPubMedGoogle Scholar
  32. 32.
    Abdul-Salam VB, Paul GA, Ali JO, Gibbs SR, Rahman D, Taylor GW, Wilkins MR, Edwards RJ (2006) Identification of plasma protein biomarkers associated with idiopathic pulmonary arterial hypertension. Proteomics 6:2286–2294CrossRefPubMedGoogle Scholar
  33. 33.
    Abdul-Salam VB, Wharton J, Cupitt J, Berryman M, Edwards RJ, Wilkins MR (2010) Proteomic analysis of lung tissues from patients with pulmonary arterial hypertension. Circulation 122:2058–2067CrossRefPubMedGoogle Scholar
  34. 34.
    Paulin R, Michelakis ED (2014) The metabolic theory of pulmonary arterial hypertension. Circ Res 115:148–164CrossRefPubMedGoogle Scholar
  35. 35.
    Ryan JJ, Archer SL (2014) The right ventricle in pulmonary arterial hypertension: disorders of metabolism, angiogenesis and adrenergic signaling in right ventricular failure. Circ Res 115:176–188CrossRefPubMedGoogle Scholar
  36. 36.
    Humbert M, Monti G, Brenot F, Sitbon O, Portier A, Grangeot-Keros L, Duroux P, Galanaud P, Simonneau G, Emilie D (1995) Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Crit Care Med 151:1628–1631CrossRefPubMedGoogle Scholar
  37. 37.
    Bertero T, Lu Y, Annis S, Hale A, Bhat B, Saggar R, Saggar R, Wallace WD, Ross DJ, Vargas SO et al (2014) Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension. J Clin Invest 124:3514–3528CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Rabinovitch M (2010) PPARgamma and the pathobiology of pulmonary arterial hypertension. Adv Exp Med Biol 661:447–458CrossRefPubMedGoogle Scholar
  39. 39.
    Kintscher U, Law RE (2005) PPARgamma-mediated insulin sensitization: the importance of fat versus muscle. Am J Physiol Endocrinol Metab 288:E287–E291CrossRefPubMedGoogle Scholar
  40. 40.
    Hansmann G, Wagner RA, Schellong S, Perez VAJ, Urashima T, Wang L, Sheikh AY, Suen RS, Stewart DJ, Rabinovitch M (2007) Pulmonary arterial hypertension is linked to insulin resistance and reversed by peroxisome proliferator-activated receptor-gamma activation. Circulation 115:1275–1284PubMedGoogle Scholar
  41. 41.
    Zamanian RT, Hansmann G, Snook S, Lilienfeld D, Rappaport KM, Reaven GM, Rabinovitch M, Doyle RL (2009) Insulin resistance in pulmonary arterial hypertension. Eur Respir J 33:318–324CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    West J, Niswender KD, Johnson JA, Pugh ME, Gleaves L, Fessel JP, Hemnes AR (2013) A potential role for insulin resistance in experimental pulmonary hypertension. Eur Respir J 41:861–871CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Aguer C, Mercier J, Man CYW, Metz L, Bordenave S, Lambert K, Jean E, Lantier L, Bounoua L, Brun JF et al (2010) Intramyocellular lipid accumulation is associated with permanent relocation ex vivo and in vitro of fatty acid translocase (FAT)/CD36 in obese patients. Diabetologia 53:1151–1163CrossRefPubMedGoogle Scholar
  44. 44.
    Karakelides H, Asmann YW, Bigelow ML, Short KR, Dhatariya K, Coenen-Schimke J, Kahl J, Mukhopadhyay D, Nair KS (2007) Effect of insulin deprivation on muscle mitochondrial ATP production and gene transcript levels in type 1 diabetic subjects. Diabetes 56:2683–2689CrossRefPubMedGoogle Scholar
  45. 45.
    Cheng Z, Almeida FA (2014) Mitochondrial alteration in type 2 diabetes and obesity: an epigenetic link. Cell Cycle 13:890–897CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Sousa Silva M, Gomes RA, Ferreira AEN, Ponces Freire A, Cordeiro C (2013) The glyoxalase pathway: the first hundred years… and beyond. Biochem J 453:1–15CrossRefPubMedGoogle Scholar
  47. 47.
    Khajali F, Liyanage R, Wideman RF (2011) Methylglyoxal and pulmonary hypertension in broiler chickens. Poult Sci 90:1287–1294CrossRefPubMedGoogle Scholar
  48. 48.
    Meloche J, Pflieger A, Vaillancourt M, Paulin R, Potus F, Zervopoulos S, Graydon C, Courboulin A, Breuils-Bonnet S, Tremblay E et al (2014) Role for DNA damage signaling in pulmonary arterial hypertension. Circulation 129:786–797CrossRefPubMedGoogle Scholar
  49. 49.
    Malenfant S, Neyron A-S, Paulin R, Potus F, Meloche J, Provencher S, Bonnet S (2013) Signal transduction in the development of pulmonary arterial hypertension. Pulm Circ 3:278–293CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Maltais F, Decramer M, Casaburi R, Barreiro E, Burelle Y, Debigaré R, Dekhuijzen PNR, Franssen F, Gayan-Ramirez G, Gea J et al (2014) An official american thoracic society/european respiratory society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 189:e15–e62CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Allaire J, Maltais F, Doyon J-F, Noël M, Leblanc P, Carrier G, Simard C, Jobin J (2004) Peripheral muscle endurance and the oxidative profile of the quadriceps in patients with COPD. Thorax 59:673–678CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Maltais F, Simard AA, Simard C, Jobin J, Desgagnés P, LeBlanc P (1996) Oxidative capacity of the skeletal muscle and lactic acid kinetics during exercise in normal subjects and in patients with COPD. Am J Respir Crit Care Med 153:288–293CrossRefPubMedGoogle Scholar
  53. 53.
    Maltais F, Leblanc P, Whittom F, Simard C, Marquis K, Bélanger M, Breton MJ, Jobin J (2000) Oxidative enzyme activities of the vastus lateralis muscle and the functional status in patients with COPD. Thorax 55:848–853CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Meyer A, Zoll J, Charles A-L, Charloux A, de Blay F, Diemunsch P, Sibilia J, Piquard F, Geny B (2013) Skeletal muscle mitochondrial dysfunction during chronic obstructive pulmonary disease: central actor and therapeutic target. Exp Physiol 98:1063–1078CrossRefPubMedGoogle Scholar
  55. 55.
    Mainguy V, Maltais F, Saey D, Gagnon P, Martel S, Simon M, Provencher S (2010) Effects of a rehabilitation program on skeletal muscle function in idiopathic pulmonary arterial hypertension. J Cardiopulm Rehabil Prev 30:319–323CrossRefPubMedGoogle Scholar
  56. 56.
    de Man FS, Handoko ML, Groepenhoff H, van t Hul AJ, Abbink J, Koppers RJH, Grotjohan HP, Twisk JWR, Bogaard H-J, Boonstra A et al (2009) Effects of exercise training in patients with idiopathic pulmonary arterial hypertension. Eur Respir J 34:669–675CrossRefPubMedGoogle Scholar
  57. 57.
    Batt J, Shadly Ahmed S, Correa J, Bain A, Granton J (2014) Skeletal muscle dysfunction in idiopathic pulmonary arterial hypertension. Am J Respir Cell Mol Biol 50:74–86PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Simon Malenfant
    • 1
  • François Potus
    • 1
  • Frédéric Fournier
    • 2
  • Sandra Breuils-Bonnet
    • 1
  • Aude Pflieger
    • 1
  • Sylvie Bourassa
    • 2
  • Ève Tremblay
    • 1
  • Benjamin Nehmé
    • 2
  • Arnaud Droit
    • 2
  • Sébastien Bonnet
    • 1
  • Steeve Provencher
    • 1
  1. 1.Pulmonary Hypertension Research GroupCentre de Recherche de l’Institut de Cardiologie et de Pneumologie de QuébecQuébec CityCanada
  2. 2.Proteomics Center and Department of Molecular Medicine, CHUQ Research CenterLaval UniversityQuebecCanada

Personalised recommendations