Journal of Molecular Medicine

, Volume 92, Issue 12, pp 1235–1244 | Cite as

Bitter and sweet taste receptors in the respiratory epithelium in health and disease

  • Robert J. Lee
  • Noam A. Cohen


Taste receptors on the tongue communicate information to the brain about the nutrient content or potential toxicity of ingested foods. However, recent research has now shown that taste receptors are also expressed far beyond the tongue, from the airway and gastrointestinal epithelia to the pancreas and brain. The functions of many of these so-called extraoral taste receptors remain unknown, but emerging basic science and clinical evidence suggests that bitter and sweet taste receptors in the airway are important in sensing bacteria and regulating innate immunity. This review focuses on the role of bitter and sweet taste receptors in human airway innate immunity and the potential clinical relevance to airway infections. The T2R38 bitter taste receptor in sinonasal cilia detects bitter bacterial quorum-sensing molecules and activates nitric oxide-dependent innate immune responses. Polymorphisms that underlie T2R38 functionality also appear to be involved in susceptibility to upper respiratory infection and chronic rhinosinusitis (CRS). Bitter and sweet receptors in specialized sinonasal solitary chemosensory cells control antimicrobial peptide secretion, which may have important implications for airway infections in CRS patients as well as patients with diabetes mellitus. Future research on taste receptors in the airway has tremendous potential to identify immune mechanisms involved in host-pathogen interactions and thus reveal novel therapeutic targets.


Chronic rhinosinusitis Host-pathogen interactions Airway innate immunity Diabetes mellitus Respiratory infections Interkingdom signaling 



Some of the research described here was supported by a grant from the Flight Attendants Medical Research Institute (082478), a philanthropic contribution from the RLG Foundation Inc., and USPHS grant R01DC013588 to N.A.C.

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Parker D, Prince A (2011) Innate immunity in the respiratory epithelium. Am J Respir Cell Mol Biol 45:189–201PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Waterer GW (2012) Airway defense mechanisms. Clin Chest Med 33:199–209PubMedCrossRefGoogle Scholar
  3. 3.
    Antunes MB, Gudis DA, Cohen NA (2009) Epithelium, cilia, and mucus: their importance in chronic rhinosinusitis. Immunol Allergy Clin N Am 29:631–643CrossRefGoogle Scholar
  4. 4.
    Blackwell DL, Collins JG, Coles R (2002) Summary health statistics for U.S. adults: National Health Interview Survey, 1997. Vital Health Stat 10:1–109Google Scholar
  5. 5.
    Ly N, McCaig LF (2002) National Hospital Ambulatory Medical Care Survey: 2000 outpatient department summary. Adv Data: 1–27Google Scholar
  6. 6.
    Ray NF, Baraniuk JN, Thamer M, Rinehart CS, Gergen PJ, Kaliner M et al (1999) Healthcare expenditures for sinusitis in 1996: contributions of asthma, rhinitis, and other airway disorders. J Allergy Clin Immunol 103:408–414PubMedCrossRefGoogle Scholar
  7. 7.
    Cherry DK, Woodwell DA (2002) National Ambulatory Medical Care Survey: 2000 summary. Adv Data: 1–32Google Scholar
  8. 8.
    Fokkens WJ, Lund VJ, Mullol J, Bachert C, Alobid I, Baroody F, Cohen N, Cervin A, Douglas R, Gevaert P, Georgalas C, Goossens H, Harvey R, Hellings P, Hopkins C, Jones N, Joos G, Kalogjera L, Kern B, Kowalski M, Price D, Riechelmann H, Schlosser R, Senior B, Thomas M, Toskala E, Voegels R, Wang de Y, Wormald PJ (2012) European Position Paper on Rhinosinusitis and Nasal Polyps 2012. Rhinology Supplement: 3 p preceding table of contents, 1–298Google Scholar
  9. 9.
    Gliklich RE, Metson R (1995) The health impact of chronic sinusitis in patients seeking otolaryngologic care. Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery 113: 104–109Google Scholar
  10. 10.
    Khalid AN, Quraishi SA, Kennedy DW (2004) Long-term quality of life measures after functional endoscopic sinus surgery. Am J Rhinol 18:131–136PubMedGoogle Scholar
  11. 11.
    Toledano A, Rodriguez G, Martin AM, Onrubia T, Galindo N (2011) Quality of life in patients with smell loss due to upper respiratory tract infections. Am J Otolaryngol 32:504–510PubMedCrossRefGoogle Scholar
  12. 12.
    Bhattacharyya N, Kepnes LJ (2008) Assessment of trends in antimicrobial resistance in chronic rhinosinusitis. Ann Otol Rhinol Laryngol 117:448–452PubMedCrossRefGoogle Scholar
  13. 13.
    Genoway KA, Philpott CM, Javer AR (2011) Pathogen yield and antimicrobial resistance patterns of chronic rhinosinusitis patients presenting to a tertiary rhinology centre. J Otolaryngol Head Neck Surg 40:232–237PubMedGoogle Scholar
  14. 14.
    Yamamoto K, Ishimaru Y (2013) Oral and extra-oral taste perception. Semin Cell Dev Biol 24:240–246PubMedCrossRefGoogle Scholar
  15. 15.
    Mennella JA, Spector AC, Reed DR, Coldwell SE (2013) The bad taste of medicines: overview of basic research on bitter taste. Clin Ther 35:1225–1246PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Clark AA, Liggett SB, Munger SD (2012) Extraoral bitter taste receptors as mediators of off-target drug effects. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 26:4827–4831CrossRefGoogle Scholar
  17. 17.
    Finger TE, Bottger B, Hansen A, Anderson KT, Alimohammadi H, Silver WL (2003) Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc Natl Acad Sci U S A 100:8981–8986PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Sbarbati A, Osculati F (2003) Solitary chemosensory cells in mammals? Cells Tissues Organs 175:51–55PubMedCrossRefGoogle Scholar
  19. 19.
    Tizzano M, Merigo F, Sbarbati A (2006) Evidence of solitary chemosensory cells in a large mammal: the diffuse chemosensory system in Bos taurus airways. J Anat 209:333–337PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Gulbransen BD, Clapp TR, Finger TE, Kinnamon SC (2008) Nasal solitary chemoreceptor cell responses to bitter and trigeminal stimulants in vitro. J Neurophysiol 99:2929–2937PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Tizzano M, Gulbransen BD, Vandenbeuch A, Clapp TR, Herman JP, Sibhatu HM et al (2010) Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc Natl Acad Sci U S A 107:3210–3215PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Tizzano M, Cristofoletti M, Sbarbati A, Finger TE (2011) Expression of taste receptors in solitary chemosensory cells of rodent airways. BMC Pulm Med 11:3PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Braun T, Mack B, Kramer MF (2011) Solitary chemosensory cells in the respiratory and vomeronasal epithelium of the human nose: a pilot study. Rhinology 49:507–512PubMedGoogle Scholar
  24. 24.
    Barham HP, Cooper SE, Anderson CB, Tizzano M, Kingdom TT, Finger TE et al (2013) Solitary chemosensory cells and bitter taste receptor signaling in human sinonasal mucosa. International forum of allergy & rhinology 3:450–457CrossRefGoogle Scholar
  25. 25.
    Lee RJ, Kofonow JM, Rosen PL, Siebert AP, Chen B, Doghramji L et al (2014) Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J Clin Invest 124:1393–1405PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Saunders CJ, Christensen M, Finger TE, Tizzano M (2014) Cholinergic neurotransmission links solitary chemosensory cells to nasal inflammation. Proc Natl Acad Sci U S A 111:6075–6080PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Pearson JP, Passador L, Iglewski BH, Greenberg EP (1995) A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92:1490–1494PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ (2012) The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 76:46–65PubMedCrossRefGoogle Scholar
  29. 29.
    Chadwick M, Trewin H, Gawthrop F, Wagstaff C (2013) Sesquiterpenoids lactones: benefits to plants and people. Int J Mol Sci 14:12780–12805PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Kim U, Wooding S, Ricci D, Jorde LB, Drayna D (2005) Worldwide haplotype diversity and coding sequence variation at human bitter taste receptor loci. Hum Mutat 26:199–204PubMedCrossRefGoogle Scholar
  31. 31.
    Li D, Zhang J (2014) Diet shapes the evolution of the vertebrate bitter taste receptor gene repertoire. Mol Biol Evol 31:303–309PubMedCrossRefGoogle Scholar
  32. 32.
    Hayes JE, Wallace MR, Knopik VS, Herbstman DM, Bartoshuk LM, Duffy VB (2011) Allelic variation in TAS2R bitter receptor genes associates with variation in sensations from and ingestive behaviors toward common bitter beverages in adults. Chem Senses 36:311–319PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Lanier SA, Hayes JE, Duffy VB (2005) Sweet and bitter tastes of alcoholic beverages mediate alcohol intake in of-age undergraduates. Physiol Behav 83:821–831PubMedCrossRefGoogle Scholar
  34. 34.
    Bachmanov AA, Bosak NP, Lin C, Matsumoto I, Ohmoto M, Reed DR et al (2014) Genetics of taste receptors. Curr Pharm Des 20:2669–2683PubMedCrossRefGoogle Scholar
  35. 35.
    Mennella JA, Pepino MY, Reed DR (2005) Genetic and environmental determinants of bitter perception and sweet preferences. Pediatrics 115:e216–e222PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Fushan AA, Simons CT, Slack JP, Manichaikul A, Drayna D (2009) Allelic polymorphism within the TAS1R3 promoter is associated with human taste sensitivity to sucrose. Curr Biol 19:1288–1293PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Greisner WA 3rd, Settipane GA (1996) Hereditary factor for nasal polyps. Allergy and asthma proceedings : the official journal of regional and state allergy societies 17:283–286CrossRefGoogle Scholar
  38. 38.
    Cohen NA, Widelitz JS, Chiu AG, Palmer JN, Kennedy DW (2006) Familial aggregation of sinonasal polyps correlates with severity of disease. Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery 134: 601–604. DOI 10.1016/j.otohns.2005.11.042Google Scholar
  39. 39.
    Hamilos DL (2007) Chronic rhinosinusitis patterns of illness. Clin Rev Allergy Immunol 20:1–13Google Scholar
  40. 40.
    Shah AS, Ben-Shahar Y, Moninger TO, Kline JN, Welsh MJ (2009) Motile cilia of human airway epithelia are chemosensory. Science 325:1131–1134PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Lee RJ, Chen B, Doghramji L, Adappa ND, Palmer JN, Kennedy DW et al (2013) Vasoactive intestinal peptide regulates sinonasal mucociliary clearance and synergizes with histamine in stimulating sinonasal fluid secretion. FASEB journal :official publication of the Federation of American Societies for Experimental Biology 27:5094–5103CrossRefGoogle Scholar
  42. 42.
    Salathe M (2007) Regulation of mammalian ciliary beating. Annu Rev Physiol 69:401–422PubMedCrossRefGoogle Scholar
  43. 43.
    Babu D, Roy S (2013) Left-right asymmetry: cilia stir up new surprises in the node. Open biology 3:130052PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Lee RJ, Xiong G, Kofonow JM, Chen B, Lysenko A, Jiang P et al (2012) T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. J Clin Invest 122:4145–4159PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Lee RJ, Chen B, Redding KM, Margolskee RF, Cohen NA (2014) Mouse nasal epithelial innate immune responses to Pseudomonas aeruginosa quorum-sensing molecules require taste signaling components. Innate immunity 20:606–617CrossRefGoogle Scholar
  46. 46.
    Perez CA, Margolskee RF, Kinnamon SC, Ogura T (2003) Making sense with TRP channels: store-operated calcium entry and the ion channel Trpm5 in taste receptor cells. Cell Calcium 33:541–549PubMedCrossRefGoogle Scholar
  47. 47.
    Haight JS, Djupesland PG, Qjan W, Chatkin JM, Furlott H, Irish J et al (1999) Does nasal nitric oxide come from the sinuses? The Journal of otolaryngology 28:197–204PubMedGoogle Scholar
  48. 48.
    Maniscalco M, Sofia M, Pelaia G (2007) Nitric oxide in upper airways inflammatory diseases. Inflammation research: official journal of the European Histamine Research Society [et al] 56:58–69CrossRefGoogle Scholar
  49. 49.
    Fang FC (1997) Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J Clin Investig 99:2818–2825PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Marcinkiewicz J (1997) Nitric oxide and antimicrobial activity of reactive oxygen intermediates. Immunopharmacology 37:35–41PubMedCrossRefGoogle Scholar
  51. 51.
    Pearson JP, Pesci EC, Iglewski BH (1997) Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179:5756–5767PubMedCentralPubMedGoogle Scholar
  52. 52.
    Bufe B, Breslin PA, Kuhn C, Reed DR, Tharp CD, Slack JP et al (2005) The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception. Curr Biol 15:322–327PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Adappa ND, Howland TJ, Palmer JN, Kennedy DW, Doghramji L, Lysenko A et al (2013) Genetics of the taste receptor T2R38 correlates with chronic rhinosinusitis necessitating surgical intervention. International forum of allergy & rhinology 3:184–187CrossRefGoogle Scholar
  54. 54.
    Adappa ND, Zhang Z, Palmer JN, Kennedy DW, Doghramji L, Lysenko A et al (2014) The bitter taste receptor T2R38 is an independent risk factor for chronic rhinosinusitis requiring sinus surgery. International forum of allergy & rhinology 4:3–7CrossRefGoogle Scholar
  55. 55.
    Mfuna Endam L, Filali-Mouhim A, Boisvert P, Boulet LP, Bosse Y, Desrosiers M (2014) Genetic variations in taste receptors are associated with chronic rhinosinusitis: a replication study. International forum of allergy & rhinology 4:200–206CrossRefGoogle Scholar
  56. 56.
    Osculati F, Bentivoglio M, Castellucci M, Cinti S, Zancanaro C, Sbarbati A (2007) The solitary chemosensory cells and the diffuse chemosensory system of the airway. Eur J Histochem 51(1):65–72PubMedGoogle Scholar
  57. 57.
    Kotrschal K (2000) Taste (s) and olfaction (s) in fish: a review of specialized sub-systems and central integration. Pflugers Arch 439:R178–R180PubMedCrossRefGoogle Scholar
  58. 58.
    Tizzano M, Finger TE (2013) Chemosensors in the nose: guardians of the airways. Physiology (Bethesda) 28:51–60CrossRefGoogle Scholar
  59. 59.
    Whitear M (1992) Solitary chemoreceptor cells. In: Hara TJ (ed) Chemoreception in fishes Chapman and Hall, London, pp. 103–125Google Scholar
  60. 60.
    Hansen A (2007) Olfactory and solitary chemosensory cells: two different chemosensory systems in the nasal cavity of the American alligator, Alligator mississippiensis. BMC Neurosci 8:64PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Gulbransen B, Silver W, Finger TE (2008) Solitary chemoreceptor cell survival is independent of intact trigeminal innervation. J Comp Neurol 508:62–71PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Lin W, Ogura T, Margolskee RF, Finger TE, Restrepo D (2008) TRPM5-expressing solitary chemosensory cells respond to odorous irritants. J Neurophysiol 99:1451–1460PubMedCrossRefGoogle Scholar
  63. 63.
    Baraniuk JN, Kaliner MA (1990) Neuropeptides and nasal secretion. J Allergy Clin Immunol 86:620–627PubMedCrossRefGoogle Scholar
  64. 64.
    Mosimann BL, White MV, Hohman RJ, Goldrich MS, Kaulbach HC, Kaliner MA (1993) Substance P, calcitonin gene-related peptide, and vasoactive intestinal peptide increase in nasal secretions after allergen challenge in atopic patients. J Allergy Clin Immunol 92:95–104PubMedCrossRefGoogle Scholar
  65. 65.
    Lee RJ, Foskett JK (2010) cAMP-activated Ca2+ signaling is required for CFTR-mediated serous cell fluid secretion in porcine and human airways. J Clin Invest 120:3137–3148PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Lee RJ, Foskett JK (2012) Why mouse airway submucosal gland serous cells do not secrete fluid in response to cAMP stimulation. J Biol Chem 287:38316–38326PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Lai Y, Chen B, Shi J, Palmer JN, Kennedy DW, Cohen NA (2011) Inflammation-mediated upregulation of centrosomal protein 110, a negative modulator of ciliogenesis, in patients with chronic rhinosinusitis. J Allergy Clin Immunol 128(1207–1215):e1201Google Scholar
  68. 68.
    Ramanathan M Jr, Lane AP (2007) A comparison of experimental methods in molecular chronic rhinosinusitis research. Am J Rhinol 21:373–377PubMedCrossRefGoogle Scholar
  69. 69.
    Dimova S, Brewster ME, Noppe M, Jorissen M, Augustijns P (2005) The use of human nasal in vitro cell systems during drug discovery and development. Toxicol in Vitro 19:107–122PubMedCrossRefGoogle Scholar
  70. 70.
    Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E (2002) Human receptors for sweet and umami taste. Proc Natl Acad Sci U S A 99:4692–4696PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Jiang P, Cui M, Zhao B, Liu Z, Snyder LA, Benard LM et al (2005) Lactisole interacts with the transmembrane domains of human T1R3 to inhibit sweet taste. J Biol Chem 280:15238–15246PubMedCrossRefGoogle Scholar
  72. 72.
    Imada T, Misaka T, Fujiwara S, Okada S, Fukuda Y, Abe K (2010) Amiloride reduces the sweet taste intensity by inhibiting the human sweet taste receptor. Biochem Biophys Res Commun 397:220–225PubMedCrossRefGoogle Scholar
  73. 73.
    Ooi EH, Wormald PJ, Tan LW (2008) Innate immunity in the paranasal sinuses: a review of nasal host defenses. Am J Rhinol 22:13–19PubMedCrossRefGoogle Scholar
  74. 74.
    Ramanathan M, Jr., Lane AP (2007) Innate immunity of the sinonasal cavity and its role in chronic rhinosinusitis. Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery 136: 348–356. DOI 10.1016/j.otohns.2006.11.011Google Scholar
  75. 75.
    Chiu AG, Antunes MB, Feldman M, Cohen NA (2007) An animal model for the study of topical medications in sinusitis. Am J Rhinol 21:5–9PubMedCrossRefGoogle Scholar
  76. 76.
    Ha KR, Psaltis AJ, Tan L, Wormald PJ (2007) A sheep model for the study of biofilms in rhinosinusitis. Am J Rhinol 21:339–345PubMedCrossRefGoogle Scholar
  77. 77.
    Wang JC, Hathorn I, Habib AR, Chang E, Javer AR (2013) Evaluation of domestic and Yucatan swine nasal sinus anatomy as models for future sinonasal research of medications delivered by standard instruments used in functional endoscopic sinus surgery. International forum of allergy & rhinology 3:150–156CrossRefGoogle Scholar
  78. 78.
    Schiffman SS, Booth BJ, Sattely-Miller EA, Graham BG, Gibes KM (1999) Selective inhibition of sweetness by the sodium salt of +/−2-(4-methoxyphenoxy) propanoic acid. Chem Senses 24:439–447PubMedCrossRefGoogle Scholar
  79. 79.
    Kyriazis GA, Soundarapandian MM, Tyrberg B (2012) Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion. Proc Natl Acad Sci U S A 109:E524–E532PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Jang HJ, Kokrashvili Z, Theodorakis MJ, Carlson OD, Kim BJ, Zhou J et al (2007) Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci U S A 104:15069–15074PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Kojima I, Nakagawa Y, Ohtsu Y, Medina A, Nagasawa M (2014) Sweet taste-sensing receptors expressed in pancreatic beta-cells: sweet molecules act as biased agonists. Endocrinol Metab 29:12–19CrossRefGoogle Scholar
  82. 82.
    Garnett JP, Baker EH, Baines DL (2012) Sweet talk: insights into the nature and importance of glucose transport in lung epithelium. Eur Respir J 40:1269–1276PubMedCrossRefGoogle Scholar
  83. 83.
    Kalsi KK, Baker EH, Fraser O, Chung YL, Mace OJ, Tarelli E et al (2009) Glucose homeostasis across human airway epithelial cell monolayers: role of diffusion, transport and metabolism. Pflugers Arch 457:1061–1070PubMedCrossRefGoogle Scholar
  84. 84.
    Pezzulo AA, Gutierrez J, Duschner KS, McConnell KS, Taft PJ, Ernst SE et al (2011) Glucose depletion in the airway surface liquid is essential for sterility of the airways. PLoS ONE 6:e16166PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Baker EH, Clark N, Brennan AL, Fisher DA, Gyi KM, Hodson ME et al (1985) Hyperglycemia and cystic fibrosis alter respiratory fluid glucose concentrations estimated by breath condensate analysis. J Appl Physiol 102:1969–1975CrossRefGoogle Scholar
  86. 86.
    Rogers GA, Den Beste K, Parkos CA, Nusrat A, Delgaudio JM, Wise SK (2011) Epithelial tight junction alterations in nasal polyposis. International forum of allergy & rhinology 1:50–54CrossRefGoogle Scholar
  87. 87.
    Soyka MB, Wawrzyniak P, Eiwegger T, Holzmann D, Treis A, Wanke K et al (2012) Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-gamma and IL-4. J Allergy Clin Immunol 130(1087–1096):e1010Google Scholar
  88. 88.
    Koziel H, Koziel MJ (1995) Pulmonary complications of diabetes mellitus. Pneumonia. Infect Dis Clin N Am 9:65–96Google Scholar
  89. 89.
    Zhang Z, Adappa ND, Lautenbach E, Chiu AG, Doghramji L, Howland TJ et al (2014) The effect of diabetes mellitus on chronic rhinosinusitis and sinus surgery outcome. International forum of allergy & rhinology. doi: 10.1002/alr.21269 Google Scholar
  90. 90.
    Krasteva G, Canning BJ, Hartmann P, Veres TZ, Papadakis T, Muhlfeld C et al (2011) Cholinergic chemosensory cells in the trachea regulate breathing. Proc Natl Acad Sci U S A 108:9478–9483PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Saunders CJ, Reynolds SD, Finger TE (2013) Chemosensory brush cells of the trachea. A stable population in a dynamic epithelium. Am J Respir Cell Mol Biol 49:190–196PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Sbarbati A, Osculati F (2005) A new fate for old cells: brush cells and related elements. J Anat 206:349–358PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Krasteva G, Canning BJ, Papadakis T, Kummer W (2012) Cholinergic brush cells in the trachea mediate respiratory responses to quorum sensing molecules. Life Sci 91:992–996PubMedCrossRefGoogle Scholar
  94. 94.
    Deshpande DA, Wang WC, McIlmoyle EL, Robinett KS, Schillinger RM, An SS et al (2010) Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat Med 16:1299–1304PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    An SS, Wang WC, Koziol-White CJ, Ahn K, Lee DY, Kurten RC et al (2012) TAS2R activation promotes airway smooth muscle relaxation despite beta (2)-adrenergic receptor tachyphylaxis. Am J Physiol Lung Cell Mol Physiol 303:L304–L311PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Grassin-Delyle S, Abrial C, Fayad-Kobeissi S, Brollo M, Faisy C, Alvarez JC et al (2013) The expression and relaxant effect of bitter taste receptors in human bronchi. Respir Res 14:134PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Robinett KS, Koziol-White CJ, Akoluk A, An SS, Panettieri RA Jr, Liggett SB (2014) Bitter taste receptor function in asthmatic and nonasthmatic human airway smooth muscle cells. Am J Respir Cell Mol Biol 50:678–683PubMedCrossRefGoogle Scholar
  98. 98.
    Blalock JE (2005) The immune system as the sixth sense. J Intern Med 257:126–138PubMedCrossRefGoogle Scholar
  99. 99.
    Blalock JE, Smith EM (2007) Conceptual development of the immune system as a sixth sense. Brain Behav Immun 21:23–33PubMedCrossRefGoogle Scholar
  100. 100.
    Bedford FL (2011) The missing sense modality: the immune system. Perception 40:1265–1267PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2014

Authors and Affiliations

  1. 1.Department of Otorhinolaryngology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Philadelphia Veterans Affairs Medical Center Surgical ServicesPhiladelphiaUSA

Personalised recommendations