Advertisement

Journal of Molecular Medicine

, Volume 93, Issue 2, pp 199–210 | Cite as

Modulation of cellular stress response via the erythropoietin/CD131 heteroreceptor complex in mouse mesenchymal-derived cells

  • Stefan Bohr
  • Suraj J. Patel
  • Radovan Vasko
  • Keyue Shen
  • Arvin Iracheta-Vellve
  • Jungwoo Lee
  • Shyam Sundhar Bale
  • Nilay Chakraborty
  • Michael Brines
  • Anthony Cerami
  • Francois BerthiaumeEmail author
  • Martin L. YarmushEmail author
Original Article

Abstract

Tissue-protective properties of erythropoietin (EPO) have let to the discovery of an alternative EPO signaling via an EPO-R/CD131 receptor complex which can now be specifically targeted through pharmaceutically designed short sequence peptides such as ARA290. However, little is still known about specific functions of alternative EPO signaling in defined cell populations. In this study, we investigated effects of signaling through EPO-R/CD131 complex on cellular stress responses and pro-inflammatory activation in different mesenchymal-derived phenotypes. We show that anti-apoptotic, anti-inflammatory effects of ARA290 and EPO coincide with the externalization of CD131 receptor component as an immediate response to cellular stress. In addition, alternative EPO signaling strongly modulated transcriptional, translational, or metabolic responses after stressor removal. Specifically, we saw that ARA290 was able to overcome a TNFα-mediated inhibition of transcription factor activation related to cell stress responses, most notably of serum response factor (SRF), heat shock transcription factor protein 1 (HSF1), and activator protein 1 (AP1). We conclude that alternative EPO signaling acts as a modulator of pro-inflammatory signaling pathways and likely plays a role in restoring tissue homeostasis.

Key message

• Erythropoietin (EPO) triggers an alternative pathway via heteroreceptor EPO/CD131.

• ARA290 peptide specifically binds EPO/CD131 but not the canonical EPO/EPO receptor.

• Oxidative stress and inflammation promote cell surface expression of CD131.

• ARA290 prevents tumor necrosis factor-mediated inhibition of stress-related genes.

• Alternative EPO signaling modulates inflammation and promotes tissue homeostasis.

Keywords

ARA290 Oxidative stress Heat shock Apoptosis TNFα Homeostasis Mesenchymal stem cells 

Notes

Acknowledgments

The peptides ARA290 and ARA297 were kindly provided by Araim Pharmaceuticals, Inc. (Ossining, NY). This work was partially funded by the Shriners Hospitals for Children and grants from the National Institutes of Health (P41EB002503, R21AR056446). S. Bohr is a receipt of a Deutsche Forschungs Gemeinschaft (GZ:BO3468/2-1). S. J. Patel was supported by a Shriners Hospitals for Children postdoctoral fellowship.

Conflict of interest

M.B. and A.C. are officers of Araim Pharmaceuticals and currently hold stock in the company. All other authors state no conflict of interest.

Supplementary material

109_2014_1218_MOESM1_ESM.pdf (450 kb)
ESM 1 (PDF 450 kb)

References

  1. 1.
    Kagaya Y, Asaumi Y, Wang W, Takeda M, Nakano M, Satoh K, Fukumoto Y, Shimokawa H (2012) Current perspectives on protective roles of erythropoietin in cardiovascular system: erythropoietin receptor as a novel therapeutic target. Tohoku J Exp Med 227:83–91PubMedCrossRefGoogle Scholar
  2. 2.
    di Villa Bianca R, Sorrentino R, Mitidieri E, Marzocco S, Autore G, Thiemermann C, Pinto A (2009) Recombinant human erythropoietin prevents lipopolysaccharide-induced vascular hyporeactivity in the rat. Shock 31:529–534PubMedCrossRefGoogle Scholar
  3. 3.
    Brines M, Grasso G, Fiordaliso F, Sfacteria A, Ghezzi P, Fratelli M, Latini R, Xie QW, Smart J, Su-Rick CJ et al (2004) Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor. Proc Natl Acad Sci U S A 101:14907–14912PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Brines M, Patel NS, Villa P, Brines C, Mennini T, De Paola M, Erbayraktar Z, Erbayraktar S, Sepodes B, Thiemermann C et al (2008) Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin. Proc Natl Acad Sci U S A 105:10925–10930PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Weber A, Dzietko M, Berns M, Felderhoff-Mueser U, Heinemann U, Maier RF, Obladen M, Ikonomidou C, Buhrer C (2005) Neuronal damage after moderate hypoxia and erythropoietin. Neurobiol Dis 20:594–600PubMedCrossRefGoogle Scholar
  6. 6.
    Kitamura H, Isaka Y, Takabatake Y, Imamura R, Suzuki C, Takahara S, Imai E (2008) Nonerythropoietic derivative of erythropoietin protects against tubulointerstitial injury in a unilateral ureteral obstruction model. Nephrol Dial Transplant 23:1521–1528PubMedCrossRefGoogle Scholar
  7. 7.
    Erbayraktar Z, Erbayraktar S, Yilmaz O, Cerami A, Coleman T, Brines M (2009) Nonerythropoietic tissue protective compounds are highly effective facilitators of wound healing. Mol Med 15:235–241PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Seluanov A, Vaidya A, Gorbunova V (2010) Establishing primary adult fibroblast cultures from rodents. J Vis Exp. doi: 10.3791/2033 Google Scholar
  9. 9.
    Hamid R, Rotshteyn Y, Rabadi L, Parikh R, Bullock P (2004) Comparison of alamar blue and MTT assays for high through-put screening. Toxicol In Vitro 18:703–710PubMedCrossRefGoogle Scholar
  10. 10.
    Ohishi M, Schipani E (2010) Bone marrow mesenchymal stem cells. J Cell Biochem 109:277–282PubMedGoogle Scholar
  11. 11.
    Ralph P, Moore MA, Nilsson K (1976) Lysozyme synthesis by established human and murine histiocytic lymphoma cell lines. J Exp Med 143:1528–1533PubMedCrossRefGoogle Scholar
  12. 12.
    Bohr S, Patel SJ, Shen K, Vitalo AG, Brines M, Cerami A, Berthiaume F, Yarmush ML (2013) Alternative erythropoietin-mediated signaling prevents secondary microvascular thrombosis and inflammation within cutaneous burns. Proc Natl Acad Sci U S A 1214099110Google Scholar
  13. 13.
    Barry FP (2003) Biology and clinical applications of mesenchymal stem cells. Birth Defects Res C Embryo Today 69:250–256PubMedCrossRefGoogle Scholar
  14. 14.
    Shi Y, Su J, Roberts AI, Shou P, Rabson AB, Ren G (2012) How mesenchymal stem cells interact with tissue immune responses. Trends Immunol 33:136–143PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Yagi H, Soto-Gutierrez A, Parekkadan B, Kitagawa Y, Tompkins RG, Kobayashi N, Yarmush ML (2010) Mesenchymal stem cells: mechanisms of immunomodulation and homing. Cell Transplant 19:667–679PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Singer JD, Gurian-West M, Clurman B, Roberts JM (1999) Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells. Genes Dev 13:2375–2387PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Wu Z, Zheng S, Yu Q (2009) The E2F family and the role of E2F1 in apoptosis. Int J Biochem Cell Biol 41:2389–2397PubMedCrossRefGoogle Scholar
  18. 18.
    Smith ML, Fornace AJ Jr (1996) Mammalian DNA damage-inducible genes associated with growth arrest and apoptosis. Mutat Res 340:109–124PubMedCrossRefGoogle Scholar
  19. 19.
    Roux PP, Blenis J (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68:320–344PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Chandel NS, Trzyna WC, McClintock DS, Schumacker PT (2000) Role of oxidants in NF-kappa B activation and TNF-alpha gene transcription induced by hypoxia and endotoxin. J Immunol 165:1013–1021PubMedCrossRefGoogle Scholar
  21. 21.
    Kirito K, Nakajima K, Watanabe T, Uchida M, Tanaka M, Ozawa K, Komatsu N (2002) Identification of the human erythropoietin receptor region required for Stat1 and Stat3 activation. Blood 99:102–110PubMedCrossRefGoogle Scholar
  22. 22.
    Fitzgerald SM, Chi DS, Lee SA, Hall K, Krishnaswamy G (2004) Inhibition of GM-CSF production in fibroblast-monocyte coculture by prednisone and effects of rhGM-CSF on human lung fibroblasts. Front Biosci 9:342–348PubMedCrossRefGoogle Scholar
  23. 23.
    Sebollela A, Cagliari TC, Limaverde GS, Chapeaurouge A, Sorgine MH, Coelho-Sampaio T, Ramos CH, Ferreira ST (2005) Heparin-binding sites in granulocyte-macrophage colony-stimulating factor. Localization and regulation by histidine ionization. J Biol Chem 280:31949–31956PubMedCrossRefGoogle Scholar
  24. 24.
    Elliott S, Busse L, Bass MB, Lu H, Sarosi I, Sinclair AM, Spahr C, Um M, Van G, Begley CG (2006) Anti-Epo receptor antibodies do not predict Epo receptor expression. Blood 107:1892–1895PubMedCrossRefGoogle Scholar
  25. 25.
    Sautina L, Sautin Y, Beem E, Zhou Z, Schuler A, Brennan J, Zharikov SI, Diao Y, Bungert J, Segal MS (2010) Induction of nitric oxide by erythropoietin is mediated by the {beta} common receptor and requires interaction with VEGF receptor 2. Blood 115:896–905PubMedCrossRefGoogle Scholar
  26. 26.
    Bohr S, Patel SJ, Shen K, Vitalo AG, Brines M, Cerami A, Berthiaume F, Yarmush ML (2013) Alternative erythropoietin-mediated signaling prevents secondary microvascular thrombosis and inflammation within cutaneous burns. Proc Natl Acad Sci U S A 110:3513–3518PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Turner NA, Das A, Warburton P, O’Regan DJ, Ball SG, Porter KE (2009) Interleukin-1alpha stimulates proinflammatory cytokine expression in human cardiac myofibroblasts. Am J Physiol Heart Circ Physiol 297:H1117–H1127PubMedCrossRefGoogle Scholar
  28. 28.
    Kourtis N, Tavernarakis N (2011) Cellular stress response pathways and ageing: intricate molecular relationships. EMBO J 30:2520–2531PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Duran WN (2008) The double-edge sword of TNF-alpha in ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 295:H2221–H2222PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Kratochwill K, Lechner M, Lichtenauer AM, Herzog R, Lederhuber HC, Siehs C, Endemann M, Mayer B, Rizzi A, Aufricht C (2011) Interleukin-1 receptor-mediated inflammation impairs the heat shock response of human mesothelial cells. Am J Pathol 178:1544–1555PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Rozhkova E, Yurinskaya M, Zatsepina O, Garbuz D, Karpov V, Surkov S, Murashev A, Ostrov V, Margulis B, Evgen’ev M et al (2010) Exogenous mammalian extracellular HSP70 reduces endotoxin manifestations at the cellular and organism levels. Ann N Y Acad Sci 1197:94–107PubMedCrossRefGoogle Scholar
  32. 32.
    Su X, Sykes JB, Ao L, Raeburn CD, Fullerton DA, Meng X (2010) Extracellular heat shock cognate protein 70 induces cardiac functional tolerance to endotoxin: differential effect on TNF-alpha and ICAM-1 levels in heart tissue. Cytokine 51:60–66PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Peng ZY, Zhou F, Wang HZ, Wen XY, Nolin TD, Bishop JV, Kellum JA (2013) The anti-oxidant effects are not the main mechanism for glutamine’s protective effects on acute kidney injury in mice. Eur J Pharmacol 705:11–19PubMedCrossRefGoogle Scholar
  34. 34.
    Heneka MT, Sharp A, Klockgether T, Gavrilyuk V, Feinstein DL (2000) The heat shock response inhibits NF-kappaB activation, nitric oxide synthase type 2 expression, and macrophage/microglial activation in brain. J Cereb Blood Flow Metab 20:800–811PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Stefan Bohr
    • 1
    • 5
  • Suraj J. Patel
    • 1
  • Radovan Vasko
    • 2
    • 6
  • Keyue Shen
    • 1
  • Arvin Iracheta-Vellve
    • 1
  • Jungwoo Lee
    • 1
  • Shyam Sundhar Bale
    • 1
  • Nilay Chakraborty
    • 1
  • Michael Brines
    • 3
  • Anthony Cerami
    • 3
  • Francois Berthiaume
    • 4
    Email author
  • Martin L. Yarmush
    • 1
    • 4
    Email author
  1. 1.Center for Engineering in Medicine/Surgical Services, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for ChildrenBostonUSA
  2. 2.Department of MedicineNew York Medical CollegeValhallaUSA
  3. 3.Araim PharmaceuticalsOssiningUSA
  4. 4.Department of Biomedical EngineeringRutgers UniversityPiscatawayUSA
  5. 5.Department of Plastic & Hand Surgery—Burn CenterUKA University Clinics RWTHAachenGermany
  6. 6.Department of Nephrology & RheumatologyUMG University ClinicsGöttingenGermany

Personalised recommendations