Advertisement

Journal of Molecular Medicine

, Volume 93, Issue 3, pp 327–342 | Cite as

Peroxisome proliferator-activated receptor γ inhibits pulmonary hypertension targeting store-operated calcium entry

  • Yingfeng Wang
  • Wenju Lu
  • Kai Yang
  • Yan Wang
  • Jie Zhang
  • Jing Jia
  • Xin Yun
  • Lichun Tian
  • Yuqin Chen
  • Qian Jiang
  • Bo Zhang
  • Xiuqing Chen
  • Jian Wang
Original Article

Abstract

In this study, we investigated the role of peroxisome proliferator-activated receptor γ (PPARγ) on store-operated calcium entry (SOCE) and expression of the main store-operated calcium channel (SOCCs) components, canonical transient receptor potential (TRPC) in chronic hypoxia (CH)-induced pulmonary hypertension (CHPH) rat models. Small interfering RNA (siRNA) knockdown and adenoviral overexpression strategies were constructed for loss-of-function and gain-of-function experiments. PPARγ agonist rosiglitazone attenuates the pathogenesis of CHPH and suppresses Hif-1α, TRPC1, TRPC6 expression in the distal pulmonary arteries (PA), and SOCE in freshly isolated rat distal pulmonary arterial smooth muscle cells (PASMCs). By comprehensive use of knockdown and overexpression studies, and bioinformatical analysis of the TRPC gene promoter and luciferase reporter assay, we demonstrated that PPARγ exerts roles of anti-proliferation, anti-migration, and pro-apoptosis in PASMCs, likely by inhibiting the elevated SOCE and TRPC expression. These effects were inhibited under the conditions of hypoxia or Hif-1α accumulation. We also found that under hypoxia, accumulated Hif-1α protein acts as upstream of suppressed PPARγ level; however, targeted PPARγ rescue acts as negative feedback on suppressing Hif-1α level and Hif-1α mediated signaling pathway. PPARγ inhibits CHPH by targeting SOCE and TRPC via inhibiting Hif-1α expression and signaling transduction.

Key messages

  • Rosiglitazone protects PH by normalizing RVSP but not right ventricle hypotrophy.

  • PPARγ inhibits PASMCs proliferation via targeting SOCE and TRPC by suppressing Hif-1α.

  • PPARγ and Hif-1α share mutual inhibitory regulation in PASMCs.

  • PPARγ restoration might be a beneficial strategy for PH treatment.

Keywords

Pulmonary hypertension PPARγ TRPC Hif-1α 

Notes

Acknowledgments

We thank Drs. Qicai Liu and Bing Li for technical assistance and constructive discussion in this study.

Funding sources

This work was supported by NIH (R01-HL093020), National Natural Science Foundation of China (81173112, 81470246, 81170052, 81220108001), Guangdong Natural Science Foundation team (1035101200300000), Guangzhou Department of Education Yangcheng Scholarship (12A001S), Guangzhou Department of Natural Science (2014Y2-00167), and Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2014, W Lu), China.

Conflict of interest

None.

Author contribution

JW initiated and designed the project, analyzed data, and wrote the paper; WL designed the project and edited the paper; YW performed the animal, functional, and molecular experiments; YW, JZ, XY, and JJ performed the molecular experiments; KY and LT edited the paper; YC, QJ, BZ, and XC performed the animal experiments.

Supplementary material

109_2014_1216_MOESM1_ESM.pdf (2 mb)
ESM 1 (PDF 2061 kb)

References

  1. 1.
    Golovina VA, Platoshyn O, Bailey CL, Wang J, Limsuwan A, Sweeney M, Rubin LJ, Yuan JX (2001) Upregulated TRP and enhanced capacitative Ca(2+) entry in human pulmonary artery myocytes during proliferation. Am J Physiol Heart Circ Physiol 280:H746–H755PubMedGoogle Scholar
  2. 2.
    Wang J, Shimoda LA, Sylvester JT (2004) Capacitative calcium entry and TRPC channel proteins are expressed in rat distal pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol 286:L848–L858CrossRefPubMedGoogle Scholar
  3. 3.
    Sweeney M, Yu Y, Platoshyn O, Zhang S, McDaniel SS, Yuan JX (2002) Inhibition of endogenous TRP1 decreases capacitative Ca2+ entry and attenuates pulmonary artery smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol 283:L144–L155PubMedGoogle Scholar
  4. 4.
    Brough GH, Wu S, Cioffi D, Moore TM, Li M, Dean N, Stevens T (2001) Contribution of endogenously expressed Trp1 to a Ca2+−selective, store-operated Ca2+ entry pathway. FASEB J 15:1727–1738CrossRefPubMedGoogle Scholar
  5. 5.
    Cioffi DL, Wu S, Stevens T (2003) On the endothelial cell I(SOC). Cell Calcium 33:323–336CrossRefPubMedGoogle Scholar
  6. 6.
    Lin MJ, Leung GP, Zhang WM, Yang XR, Yip KP, Tse CM, Sham JS (2004) Chronic hypoxia-induced upregulation of store-operated and receptor-operated Ca2+ channels in pulmonary arterial smooth muscle cells: a novel mechanism of hypoxic pulmonary hypertension. Circ Res 95:496–505CrossRefPubMedGoogle Scholar
  7. 7.
    Jiang BH, Rue E, Wang GL, Roe R, Semenza GL (1996) Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem 271:17771–17778CrossRefPubMedGoogle Scholar
  8. 8.
    Huang LE, Gu J, Schau M, Bunn HF (1998) Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 95:7987–7992CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Semenza GL (1998) Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev 8:588–594CrossRefPubMedGoogle Scholar
  10. 10.
    Semenza GL (2000) Expression of hypoxia-inducible factor 1: mechanisms and consequences. Biochem Pharmacol 59:47–53CrossRefPubMedGoogle Scholar
  11. 11.
    Wang J, Weigand L, Lu W, Sylvester JT, Semenza GL, Shimoda LA (2006) Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res 98:1528–1537CrossRefPubMedGoogle Scholar
  12. 12.
    Ameshima S, Golpon H, Cool CD, Chan D, Vandivier RW, Gardai SJ, Wick M, Nemenoff RA, Geraci MW, Voelkel NF (2003) Peroxisome proliferator-activated receptor gamma (PPARgamma) expression is decreased in pulmonary hypertension and affects endothelial cell growth. Circ Res 92:1162–1169CrossRefPubMedGoogle Scholar
  13. 13.
    Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, Grimaldi PA, Kadowaki T, Lazar MA, O'Rahilly S et al (2006) International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev 58:726–741CrossRefPubMedGoogle Scholar
  14. 14.
    Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347:645–650CrossRefPubMedGoogle Scholar
  15. 15.
    Gearing KL, Gottlicher M, Teboul M, Widmark E, Gustafsson JA (1993) Interaction of the peroxisome-proliferator-activated receptor and retinoid X receptor. Proc Natl Acad Sci U S A 90:1440–1444CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Yki-Jarvinen H (2004) Thiazolidinediones. N Engl J Med 351:1106–1118CrossRefPubMedGoogle Scholar
  17. 17.
    Matsuda Y, Hoshikawa Y, Ameshima S, Suzuki S, Okada Y, Tabata T, Sugawara T, Matsumura Y, Kondo T (2005) Effects of peroxisome proliferator-activated receptor gamma ligands on monocrotaline-induced pulmonary hypertension in rats. Nihon Kokyuki Gakkai Zasshi 43:283–288PubMedGoogle Scholar
  18. 18.
    Crossno JT Jr, Garat CV, Reusch JE, Morris KG, Dempsey EC, McMurtry IF, Stenmark KR, Klemm DJ (2007) Rosiglitazone attenuates hypoxia-induced pulmonary arterial remodeling. Am J Physiol Lung Cell Mol Physiol 292:L885–L897CrossRefPubMedGoogle Scholar
  19. 19.
    Yu AY, Shimoda LA, Iyer NV, Huso DL, Sun X, McWilliams R, Beaty T, Sham JS, Wiener CM, Sylvester JT et al (1999) Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha. J Clin Invest 103:691–696CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Godfrey BJ, Akileswaran L, Gold MH (1994) A reporter gene construct for studying the regulation of manganese peroxidase gene expression. Appl Environ Microbiol 60:1353–1358PubMedCentralPubMedGoogle Scholar
  21. 21.
    Lu W, Ran P, Zhang D, Peng G, Li B, Zhong N, Wang J (2010) Sildenafil inhibits chronically hypoxic upregulation of canonical transient receptor potential expression in rat pulmonary arterial smooth muscle. Am J Physiol Cell Physiol 298:C114–C123CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Wang J, Yang K, Xu L, Zhang Y, Lai N, Jiang H, Zhong N, Ran P, Lu W (2013) Sildenafil inhibits hypoxia-induced transient receptor potential canonical protein expression in pulmonary arterial smooth muscle via cGMP-PKG-PPARgamma axis. Am J Respir Cell Mol Biol 49:231–240CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356:2457–2471CrossRefPubMedGoogle Scholar
  24. 24.
    Collins AR, Meehan WP, Kintscher U, Jackson S, Wakino S, Noh G, Palinski W, Hsueh WA, Law RE (2001) Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 21:365–371CrossRefPubMedGoogle Scholar
  25. 25.
    Li AC, Brown KK, Silvestre MJ, Willson TM, Palinski W, Glass CK (2000) Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 106:523–531CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Nisbet RE, Bland JM, Kleinhenz DJ, Mitchell PO, Walp ER, Sutliff RL, Hart CM (2010) Rosiglitazone attenuates chronic hypoxia-induced pulmonary hypertension in a mouse model. Am J Respir Cell Mol Biol 42:482–490CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Goetze S, Xi XP, Kawano H, Gotlibowski T, Fleck E, Hsueh WA, Law RE (1999) PPAR gamma-ligands inhibit migration mediated by multiple chemoattractants in vascular smooth muscle cells. J Cardiovasc Pharmacol 33:798–806CrossRefPubMedGoogle Scholar
  28. 28.
    Law RE, Goetze S, Xi XP, Jackson S, Kawano Y, Demer L, Fishbein MC, Meehan WP, Hsueh WA (2000) Expression and function of PPARgamma in rat and human vascular smooth muscle cells. Circulation 101:1311–1318CrossRefPubMedGoogle Scholar
  29. 29.
    Marx N, Schonbeck U, Lazar MA, Libby P, Plutzky J (1998) Peroxisome proliferator-activated receptor gamma activators inhibit gene expression and migration in human vascular smooth muscle cells. Circ Res 83:1097–1103CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Burgess HA, Daugherty LE, Thatcher TH, Lakatos HF, Ray DM, Redonnet M, Phipps RP, Sime PJ (2005) PPARgamma agonists inhibit TGF-beta induced pulmonary myofibroblast differentiation and collagen production: implications for therapy of lung fibrosis. Am J Physiol Lung Cell Mol Physiol 288:L1146–L1153CrossRefPubMedGoogle Scholar
  31. 31.
    Stenmark KR, Mecham RP (1997) Cellular and molecular mechanisms of pulmonary vascular remodeling. Annu Rev Physiol 59:89–144CrossRefPubMedGoogle Scholar
  32. 32.
    Shimoda LA, Sham JS, Shimoda TH, Sylvester JT (2000) L-type Ca(2+) channels, resting [Ca(2+)](i), and ET-1-induced responses in chronically hypoxic pulmonary myocytes. Am J Physiol Lung Cell Mol Physiol 279:L884–L894PubMedGoogle Scholar
  33. 33.
    Yun Z, Maecker HL, Johnson RS, Giaccia AJ (2002) Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev Cell 2:331–341CrossRefPubMedGoogle Scholar
  34. 34.
    Krishnan J, Suter M, Windak R, Krebs T, Felley A, Montessuit C, Tokarska-Schlattner M, Aasum E, Bogdanova A, Perriard E et al (2009) Activation of a HIF1alpha-PPARgamma axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy. Cell Metab 9:512–524CrossRefPubMedGoogle Scholar
  35. 35.
    Lee KS, Kim SR, Park SJ, Park HS, Min KH, Jin SM, Lee MK, Kim UH, Lee YC (2006) Peroxisome proliferator activated receptor-gamma modulates reactive oxygen species generation and activation of nuclear factor-kappaB and hypoxia-inducible factor 1alpha in allergic airway disease of mice. J Allergy Clin Immunol 118:120–127CrossRefPubMedGoogle Scholar
  36. 36.
    Olmos G, Conde I, Arenas I, Del Peso L, Castellanos C, Landazuri MO, Lucio-Cazana J (2007) Accumulation of hypoxia-inducible factor-1alpha through a novel electrophilic, thiol antioxidant-sensitive mechanism. Cell Signal 19:2098–2105CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yingfeng Wang
    • 1
  • Wenju Lu
    • 1
  • Kai Yang
    • 1
    • 2
  • Yan Wang
    • 1
  • Jie Zhang
    • 1
  • Jing Jia
    • 1
  • Xin Yun
    • 1
    • 2
  • Lichun Tian
    • 1
  • Yuqin Chen
    • 1
  • Qian Jiang
    • 1
  • Bo Zhang
    • 1
  • Xiuqing Chen
    • 1
  • Jian Wang
    • 1
    • 2
    • 3
  1. 1.State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory DiseasesThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople’s Republic of China
  2. 2.Division of Pulmonary and Critical Care Medicine, School of MedicineJohns Hopkins UniversityBaltimoreUSA
  3. 3.Division of PulmonaryThe People’s Hospital of Inner MongoliaHohhotChina

Personalised recommendations