Journal of Molecular Medicine

, Volume 92, Issue 11, pp 1139–1145 | Cite as

Transplantation of mesenchymal stem cells into the renal medulla attenuated salt-sensitive hypertension in Dahl S rat

  • Junping Hu
  • Qing Zhu
  • Min Xia
  • Tai L. Guo
  • Zhengchao Wang
  • Pin-Lan Li
  • Wei-Qing Han
  • Fan Yi
  • Ningjun LiEmail author
Original Article


Adult stem cell deficiency has been implicated in the pathogenic mechanism for various diseases. Renal medullary dysfunction is one of the major mechanisms for the development of hypertension in Dahl salt-sensitive (S) rats. The present study first detected a stem cell deficiency in the renal medulla in Dahl S rats and then tested the hypothesis that transplantation of mesenchymal stem cells (MSCs) into the renal medulla improves salt-sensitive hypertension in Dahl S rats. Immunohistochemistry and flowcytometry analyses showed a significantly reduced number of stem cell marker CD133+ cells in the renal medulla from Dahl S rats compared with controls, suggesting a stem cell deficiency. Rat MSCs or control cells were transplanted into the renal medulla in uninephrectomized Dahl S rats, which were then treated with a low- or high-salt diet for 20 days. High-salt-induced sodium retention and hypertension was significantly attenuated in MSC-treated rats compared with control cell-treated rats. Meanwhile, high-salt-induced increases of proinflammatory factors, monocyte chemoattractant protein-1, and interleukin-1β, in the renal medulla were blocked by MSC treatment. Furthermore, immunostaining showed that high-salt-induced immune cell infiltration into the renal medulla was substantially inhibited by MSC treatment. These results suggested that stem cell defect in the renal medulla may contribute to the hypertension in Dahl S rats and that correction of this stem cell defect by MSCs attenuated hypertension in Dahl S rats through anti-inflammation.

Key message

  • Stem cell defect in the renal medulla may contribute to salt-sensitive hypertension

  • Stem cell therapy is a potential therapeutic strategy for salt-sensitive hypertension

  • Normal stem cell inhibits the inflammatory response to high salt in the renal medulla


CD133 Inflammation Immune cell 


Sources of funding

This work was supported by National Institute of Health (grants HL-89563, HL-106042, and DK-54927) and National Nature Science Foundation of China (grant 81328006).



Supplementary material

109_2014_1199_MOESM1_ESM.pdf (420 kb)
ESM 1 PDF 419 kb


  1. 1.
    Meirelles LS, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213CrossRefGoogle Scholar
  2. 2.
    Lin F, Igarashi P (2003) Searching for stem/progenitor cells in the adult mouse kidney. J Am Soc Nephrol 14:3290–3292PubMedCrossRefGoogle Scholar
  3. 3.
    Oliver JA, Maarouf O, Cheema FH, Martens TP, Al-Awqati Q (2004) The renal papilla is a niche for adult kidney stem cells. J Clin Invest 114:795–804PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Bussolati B, Bruno S, Grange C, Buttiglieri S, Deregibus MC, Cantino D, Camussi G (2005) Isolation of renal progenitor cells from adult human kidney. Am J Pathol 166:545–555PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Haller H, de Groot K, Bahlmann F, Elger M, Fliser D (2005) Stem cells and progenitor cells in renal disease. Kidney Int 68:1932–1936PubMedCrossRefGoogle Scholar
  6. 6.
    Oliver JA (2004) Adult renal stem cells and renal repair. Curr Opin Nephrol Hypertens 13:17–22PubMedCrossRefGoogle Scholar
  7. 7.
    Raaijmakers MH, Scadden DT (2008) Evolving concepts on the microenvironmental niche for hematopoietic stem cells. Curr Opin Hematol 15:301–306PubMedCrossRefGoogle Scholar
  8. 8.
    Stout GJ, Blasco MA (2009) Genetic dissection of the mechanisms underlying telomere-associated diseases: impact of the TRF2 telomeric protein on mouse epidermal stem cells. Dis Model Mech 2:139–156PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Iwashita T, Kruger GM, Pardal R, Kiel MJ, Morrison SJ (2003) Hirschsprung disease is linked to defects in neural crest stem cell function. Science 301:972–976PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Lagali N, Eden U, Utheim TP, Chen X, Riise R, Dellby A, Fagerholm P (2013) In vivo morphology of the limbal palisades of vogt correlates with progressive stem cell deficiency in aniridia-related keratopathy. Invest Ophthalmol Vis Sci 54:5333–5342PubMedCrossRefGoogle Scholar
  11. 11.
    Wilschut KJ, Ling VB, Bernstein HS (2012) Concise review: stem cell therapy for muscular dystrophies. Stem Cells Transl Med 1:833–842PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Weinberger MH, Miller JZ, Luft FC, Grim CE, Fineberg NS (1986) Definitions and characteristics of sodium sensitivity and blood pressure resistance. Hypertension 8:II127–134PubMedCrossRefGoogle Scholar
  13. 13.
    Campese V (1994) Salt sensitivity in hypertension. Renal and cardiovascular implications clinical conference. Hypertension 23:531–550PubMedCrossRefGoogle Scholar
  14. 14.
    Weinberger MH, Fineberg NS, Fineberg SE, Weinberger M (2001) Salt sensitivity, pulse pressure, and death in normal and hypertensive humans. Hypertension 37:429–432PubMedCrossRefGoogle Scholar
  15. 15.
    Cowley AW Jr, Mattson DL, Lu S, Roman RJ (1995) The renal medulla and hypertension. Hypertension 25:663–673PubMedCrossRefGoogle Scholar
  16. 16.
    Mattson DL (2003) Importance of the renal medullary circulation in the control of sodium excretion and blood pressure. Am J Physiol Regul Integr Comp Physiol 284:R13–27PubMedGoogle Scholar
  17. 17.
    Bergstrom G, Evans RG (2004) Mechanisms underlying the antihypertensive functions of the renal medulla. Acta Physiol Scand 181:475–486PubMedCrossRefGoogle Scholar
  18. 18.
    Cowley AW Jr (2003) Genomics and homeostasis. Am J Physiol Regul Integr Comp Physiol 284:R611–627PubMedGoogle Scholar
  19. 19.
    Wang Z, Zhu Q, Xia M, Li PL, Hinton SJ, Li N (2010) Hypoxia-inducible factor prolyl-hydroxylase 2 senses high-salt intake to increase hypoxia inducible factor 1alpha levels in the renal medulla. Hypertension 55:1129–1136PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A 97:14720–14725PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Kordes C, Sawitza I, Muller-Marbach A, Ale-Agha N, Keitel V, Klonowski-Stumpe H, Haussinger D (2007) CD133+ hepatic stellate cells are progenitor cells. Biochem Biophys Res Commun 352:410–417PubMedCrossRefGoogle Scholar
  22. 22.
    Bhatia M (2001) AC133 expression in human stem cells. Leukemia 15:1685–1688PubMedCrossRefGoogle Scholar
  23. 23.
    Bao J, Tu Z, Sun H, Luo G, Yang L, Song J, Qin M, Shi Y, Bu H, Li Y (2008) R2: identification of renal potential progenitor/stem cells that participate in the renal regeneration processes of kidney allograft fibrosis. Nephrology (Carlton) 13:500–507PubMedCrossRefGoogle Scholar
  24. 24.
    Blasi ER, Rocha R, Rudolph AE, Blomme EA, Polly ML, McMahon EG (2003) Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats. Kidney Int 63:1791–1800PubMedCrossRefGoogle Scholar
  25. 25.
    Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29:313–326PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Takai S, Jin D, Sakonjo H, Miyazaki M (2010) Combination therapy with irbesartan and efonidipine for attenuation of proteinuria in Dahl salt-sensitive rats. Hypertens Res 33:953–959PubMedCrossRefGoogle Scholar
  27. 27.
    Crowley SD, Song YS, Sprung G, Griffiths R, Sparks M, Yan M, Burchette JL, Howell DN, Lin EE, Okeiyi B et al (2010) A role for angiotensin II type 1 receptors on bone marrow-derived cells in the pathogenesis of angiotensin II-dependent hypertension. Hypertension 55:99–108PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Fujii S, Zhang L, Kosaka H (2007) Albuminuria, expression of nicotinamide adenine dinucleotide phosphate oxidase and monocyte chemoattractant protein-1 in the renal tubules of hypertensive Dahl salt-sensitive rats. Hypertens Res 30:991–998PubMedCrossRefGoogle Scholar
  29. 29.
    Larijani B, Esfahani EN, Amini P, Nikbin B, Alimoghaddam K, Amiri S, Malekzadeh R, Yazdi NM, Ghodsi M, Dowlati Y et al (2012) Stem cell therapy in treatment of different diseases. Acta Med Iran 50:79–96PubMedGoogle Scholar
  30. 30.
    Malliaras K, Marban E (2011) Cardiac cell therapy: where we’ve been, where we are, and where we should be headed. Br Med Bull 98:161–185PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Mariani E, Facchini A (2012) Clinical applications and biosafety of human adult mesenchymal stem cells. Curr Pharm Des 18:1821–1845PubMedCrossRefGoogle Scholar
  32. 32.
    Souidi N, Stolk M, Seifert M (2013) Ischemia-reperfusion injury: beneficial effects of mesenchymal stromal cells. Curr Opin Organ Transplant 18:34–43PubMedCrossRefGoogle Scholar
  33. 33.
    Rodriguez-Iturbe B, Quiroz Y, Herrera-Acosta J, Johnson RJ, Pons HA (2002) The role of immune cells infiltrating the kidney in the pathogenesis of salt-sensitive hypertension. J Hypertens Suppl 20:S9–14PubMedGoogle Scholar
  34. 34.
    Mattson DL, James L, Berdan EA, Meister CJ (2006) Immune suppression attenuates hypertension and renal disease in the Dahl salt-sensitive rat. Hypertension 48:149–156PubMedCrossRefGoogle Scholar
  35. 35.
    Oliveira-Sales EB, Maquigussa E, Semedo P, Pereira LG, Ferreira VM, Camara NO, Bergamaschi CT, Campos RR, Boim MA (2013) Mesenchymal stem cells (MSC) prevented the progression of renovascular hypertension, improved renal function and architecture. PLoS One 8:e78464PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Junping Hu
    • 1
  • Qing Zhu
    • 1
  • Min Xia
    • 1
  • Tai L. Guo
    • 1
  • Zhengchao Wang
    • 2
  • Pin-Lan Li
    • 1
  • Wei-Qing Han
    • 1
  • Fan Yi
    • 3
  • Ningjun Li
    • 1
    Email author
  1. 1.Department of Pharmacology & Toxicology, Medical College of Virginia CampusVirginia Commonwealth UniversityRichmondUSA
  2. 2.Laboratory for Developmental Biology and Neurosciences, College of Life SciencesFujian Normal UniversityFuzhouPeople’s Republic of China
  3. 3.Department of PharmacologyShandong University School of MedicineJinanPeople’s Republic of China

Personalised recommendations