Journal of Molecular Medicine

, Volume 92, Issue 11, pp 1201–1208 | Cite as

Mutual amplification of corticosteroids and angiotensin systems in human vascular smooth muscle cells and carotid atheroma

  • Hanène Ayari
  • Liliana Legedz
  • Catherine Cerutti
  • Pierre Lantelme
  • Patrick Feugier
  • Marie-Paule Gustin
  • Olivier Lohez
  • Ali Nehme
  • Jacques Yuan Li
  • Jouda Gharbi-Chihi
  • Giampiero Bricca
Original Article


The involvement of the renin-angiotensin-aldosterone system (RAAS) and cortisol in increased cardiovascular risk is well known. If numerous relationships between RAAS and corticosteroids have been described, their interactions within the arterial wall, especially during the transdifferentiation of vascular smooth muscle cells (VSMCs) and the atheroma formation, are not established. Here, we clarified the relationships between mRNA levels of corticosteroid and angiotensin system components using cortisol, fludrocortisone, and angiotensin II treatments of cultured VSMCs maintained in a contractile phenotype or induced to a lipid storing phenotype. We then determined the quantitative relationships between the mRNA content of these components measured with reverse transcription polymerase chain reaction (RT-PCR), in the atheroma plaque and nearby macroscopically intact tissue (MIT) from 27 human carotid endarterectomy samples. In both VSMC phenotypes, cortisol markedly increased both angiotensinogen (AGT) and AT1-receptor (AT1R) mRNA levels. These effects of cortisol were mediated via glucocorticoid receptor-α (GRα) without any illicit activation of the mineralocorticoid receptor (MR). Angiotensin II increased GRα, 11βHSD1, CYP11B1, as well as CYP11B2 mRNAs and decreased AT1R in contractile VSMC; only GRα and CYP11B2 were increased in lipid storing VSMCs, while MR and AGT mRNAs decreased. In endarterectomy specimens, positive correlations between mRNA levels of AGT and aldosterone synthase or 11βHSD1 in MIT and of AT1R and MR in atheroma were detected. The arterial tissue angiotensin system is a target for local glucocorticoids and arterial glucocorticoids for angiotensin II. Both systems appear activated in lipid storing VSMCs and strongly correlated in vivo, and their mutual amplification may contribute to the development of atheroma.

Key message

  • Cortisol increases angiotensin II signaling in VSMCs via GRα.

  • Angiotensin II stimulates cortisol signaling through increased GRα and 11β-HSD1.

  • Corticoid and angiotensin receptors are strongly correlated in the arterial wall.

  • These correlations are maintained at different stages of atheroma development.

  • An auto-amplification loop between angiotensin and cortisol signaling favors atherogenesis.


Atherosclerosis Adipocyte Transdifferentiation Lipid storage Angiotensin Glucocorticoids Mineralocorticoids Nuclear receptors Type 2 diabetes Artery 

Supplementary material

109_2014_1193_MOESM1_ESM.doc (72 kb)
ESM 1(DOC 71 kb)
109_2014_1193_MOESM2_ESM.doc (44 kb)
ESM 2(DOC 43 kb)


  1. 1.
    Roger VL, Go AS, Lloyd-Jones DM et al (2012) Executive summary: heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125:188–197PubMedCrossRefGoogle Scholar
  2. 2.
    Jonasson L, Holm J, Skalli O et al (1986) Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arterioscler Thromb Vasc Biol 6:131–138CrossRefGoogle Scholar
  3. 3.
    Müller DN, Bohlender J, Hilgers KF et al (1997) Vascular angiotensin-converting enzyme expression regulates local angiotensin II. Hypertension 29:98–104PubMedCrossRefGoogle Scholar
  4. 4.
    Legedz L, Randon J, Sessa C et al (2005) Induction of tissue kallikrein in human carotid atheroma does not lead to kallikrein-kinins pathway activation. J Hypertens 23:359–366PubMedCrossRefGoogle Scholar
  5. 5.
    Legedz L, Randon J, Sessa C et al (2004) Cathepsin G is associated with atheroma formation in human carotid artery. J Hypertens 22:157–166PubMedCrossRefGoogle Scholar
  6. 6.
    Stuzmann M, Radziwill R, Komischke K, Klett C, Hackenthal E (1986) Hormonal and pharmacological alteration of angiotensinogen secretion from rat hepatocytes. Biochim Biophys Acta 886:48–56PubMedCrossRefGoogle Scholar
  7. 7.
    Della Bruna R, Ries S, Himmelstoss C, Kurtz A (1995) Expression of cardiac angiotensin II AT1 receptor genes in rat hearts is regulated by steroids but not by angiotensin II. J Hypertens 13:763–769PubMedGoogle Scholar
  8. 8.
    Brasier AR, Han Y, Sherman CT (1999) Transcriptional regulation of angiotensinogen gene expression. Vitam Horm 57:217–247PubMedCrossRefGoogle Scholar
  9. 9.
    Aubert J, Darimont C, Safonova I et al (1997) Regulation by glucocorticoids of angiotensinogen gene expression and secretion in adipose cells. Biochem J 328(Pt 2):701–706PubMedPubMedCentralGoogle Scholar
  10. 10.
    Molnar GA, Lindschau C, Dubrovska G et al (2008) Glucocorticoid-related signaling effects in vascular smooth muscle cells. Hypertension 51:1372–1378PubMedCrossRefGoogle Scholar
  11. 11.
    Jaffe IZ, Mendelsohn ME (2005) Angiotensin II and aldosterone regulate gene transcription via functional mineralocortocoid receptors in human coronary artery smooth muscle cells. Circ Res 96:643–650PubMedCrossRefGoogle Scholar
  12. 12.
    Rautureau Y, Paradis P, Schiffrin EL (2011) Cross-talk between aldosterone and angiotensin signaling in vascular smooth muscle cells. Steroids 76:834–839PubMedGoogle Scholar
  13. 13.
    Batenburg WW, Jansen PM, van den Bogaerdt AJ, Danser AHJ (2012) Angiotensin II–aldosterone interaction in human coronary microarteries involves GPR30, EGFR, and endothelial NO synthase. Cardiovasc Res 94:136–143PubMedCrossRefGoogle Scholar
  14. 14.
    Ayari H, Legedz L, Lantelme P et al (2012) Auto-amplification of cortisol actions in human carotid atheroma is linked to arterial remodeling and stroke. Fundam Clin Pharmacol. doi:10.1111/j.1472-8206.2012.01064.x, n/a–n/aPubMedGoogle Scholar
  15. 15.
    Gomez D, Owens GK (2012) Smooth muscle cell phenotypic switching in atherosclerosis. Cardiovasc Res 95:156–164PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Rensen SSM, Doevendans PAFM, van Eys GJJM (2007) Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J 15:100–108PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801PubMedCrossRefGoogle Scholar
  18. 18.
    Declaration of Helsinki (1997) Recommendations guiding physicians in biomedical research involving human subjects. Cardiovasc Res 25:2–3Google Scholar
  19. 19.
    Hodroj W, Legedz L, Foudi N et al (2007) Increased insulin-stimulated expression of arterial angiotensinogen and angiotensin type 1 receptor in patients with type 2 diabetes mellitus and atheroma. Arterioscler Thromb Vasc Biol 27:525–531PubMedCrossRefGoogle Scholar
  20. 20.
    Stary HC, Chandler AB, Glagov S et al (1994) A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 89:2462–2478PubMedCrossRefGoogle Scholar
  21. 21.
    Stary HC, Chandler AB, Dinsmore RE et al (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: a report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol 15:1512–1531PubMedCrossRefGoogle Scholar
  22. 22.
    Davies JD, Carpenter KLH, Challis IR et al (2005) Adipocytic differentiation and liver x receptor pathways regulate the accumulation of triacylglycerols in human vascular smooth muscle cells. J Biol Chem 280:3911–3919PubMedCrossRefGoogle Scholar
  23. 23.
    Dusserre E, Bourdillon MC, Ciavatti M et al (1993) Lipid biosynthesis in cultured arterial smooth muscle cells is related to their phenotype. Lipids 28:589–592PubMedCrossRefGoogle Scholar
  24. 24.
    Masuzaki H, Paterson J, Shinyama H et al (2001) A transgenic model of visceral obesity and the metabolic syndrome. Science 294:2166–2170PubMedCrossRefGoogle Scholar
  25. 25.
    Masuzaki H, Yamamoto H, Kenyon CJ et al (2003) Transgenic amplification of glucocorticoid action in adipose tissue causes high blood pressure in mice. J Clin Invest 112:83–90PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Hermanowski-Vosatka A, Balkovec JM, Cheng K et al (2005) 11β-HSD1 inhibition ameliorates metabolic syndrome and prevents progression of atherosclerosis in mice. J Exp Med 202:517–527PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Seckl JR, Walker BR (2001) Minireview: 11β-hydroxysteroid dehydrogenase type 1—a tissue-specific amplifier of glucocorticoid action. Endocrinology 142:1371–1376PubMedGoogle Scholar
  28. 28.
    Terzolo M, Pia A, Alì A et al (2002) Adrenal incidentaloma: a new cause of the metabolic syndrome? J Clin Endocrinol Metab 87:998–1003PubMedCrossRefGoogle Scholar
  29. 29.
    Tauchmanovà L, Rossi R, Biondi B et al (2002) Patients with subclinical Cushing’s syndrome due to adrenal adenoma have increased cardiovascular risk. J Clin Endocrinol Metab 87:4872–4878PubMedCrossRefGoogle Scholar
  30. 30.
    Faggiano A, Pivonello R, Spiezia S et al (2003) Cardiovascular risk factors and common carotid artery caliber and stiffness in patients with Cushing’s disease during active disease and 1 year after disease remission. J Clin Endocrinol Metab 88:2527–2533PubMedCrossRefGoogle Scholar
  31. 31.
    Hollis G, Huber R (2011) 11β-Hydroxysteroid dehydrogenase type 1 inhibition in type 2 diabetes mellitus. Diabetes Obes Metab 13:1–6PubMedCrossRefGoogle Scholar
  32. 32.
    Stewart PM, Boulton A, Kumar S et al (1999) Cortisol metabolism in human obesity: impaired cortisone → cortisol conversion in subjects with central adiposity. J Clin Endocrinol Metab 84:1022–1027PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hanène Ayari
    • 1
    • 2
  • Liliana Legedz
    • 1
  • Catherine Cerutti
    • 1
  • Pierre Lantelme
    • 1
  • Patrick Feugier
    • 1
  • Marie-Paule Gustin
    • 1
  • Olivier Lohez
    • 1
  • Ali Nehme
    • 1
  • Jacques Yuan Li
    • 1
  • Jouda Gharbi-Chihi
    • 2
  • Giampiero Bricca
    • 1
  1. 1.Hôpital Nord Ouest, VillefrancheUniversité Lyon1, INSERM, ERI22LyonFrance
  2. 2.Faculté de Médecine de TunisLaboratoire de BiochimieTunisTunisia

Personalised recommendations