Journal of Molecular Medicine

, Volume 92, Issue 7, pp 723–733 | Cite as

Growth factor transduction pathways: paradigm of anti-neoplastic targeted therapy

Review

Abstract

Molecularly targeted cancer treatment has become an achievable goal thanks to systematic analysis of cancer genome as well as development of highly selective tumor targeted drugs. In many human cancers, deregulation of the RTK/RAS/MAPK pathway is the driving force of the disease. Indeed, cancer cells become addicted to such signaling, rendering them susceptible to drugs that can intercept growth factor signaling cascade at different levels. Discovery of mutations or aberrant expression of components of this cascade in radio- and chemotherapy refractory human melanoma acted as an enormous stimulus for scientist to try to identify and clinically test new therapeutic approaches blocking the RTK/RAS/MAPK cascade. These efforts not only resulted in the identification of new drugs for melanoma treatment but also in a better understanding of molecular basis of primary and secondary resistance to targeted therapies.

Keywords

MAPK Targeted therapy Kinase inhibitor Melanoma 

Notes

Acknowledgments

This study was supported in part by grants from the Italian Association for Cancer Research (AIRC) and by a start-up grant from Regione Toscana. We thank Rosa Marina Melillo for useful discussions. We apologize to the many authors whose work has not been cited due to space limitation.

References

  1. 1.
    O'Brien Z, Fallah Moghaddam M (2013) Small molecule kinase inhibitors approved by the FDA from 2000 to 2011: a systematic review of preclinical ADME data. Expert Opin Drug Metab Toxicol 9:1597–612PubMedCrossRefGoogle Scholar
  2. 2.
    Sliwkowski MX, Mellman I (2013) Antibody therapeutics in cancer. Science 341:1192–8PubMedCrossRefGoogle Scholar
  3. 3.
    Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9:28–39PubMedCrossRefGoogle Scholar
  4. 4.
    Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75:50–83PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Stephen AG, Esposito D, Bagni RK, McCormick F (2014) Dragging Ras back in the ring. Cancer Cell 25:272–281PubMedCrossRefGoogle Scholar
  6. 6.
    Neuzillet C, Tijeras-Raballand A, de Mestier L, Cros J, Faivre S, Raymond E (2014) MEK in cancer and cancer therapy. Pharmacol Ther 141:160–71PubMedCrossRefGoogle Scholar
  7. 7.
    Koul HK, Pal M, Koul S (2013) Role of p38 MAP kinase signal transduction in solid tumors. Genes Cancer 4:342–359PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Tournier C (2013) The 2 faces of JNK signaling in cancer. Genes Cancer 4:397–400PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Garraway LA, Lander ES (2013) Lessons from the cancer genome. Cell 153:17–37PubMedCrossRefGoogle Scholar
  10. 10.
    Turjanski AG, Vaqué JP, Gutkind JS (2007) MAP kinases and the control of nuclear events. Oncogene 26:3240–53PubMedCrossRefGoogle Scholar
  11. 11.
    Sebolt-Leopold JS, Herrera R (2004) Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 4:937–47PubMedCrossRefGoogle Scholar
  12. 12.
    Lochhead PA, Gilley R, Cook SJ (2012) ERK5 and its role in tumour development. Biochem Soc Trans 40:251–6PubMedCrossRefGoogle Scholar
  13. 13.
    Long W, Foulds CE, Qin J, Liu J, Ding C, Lonard DM, Solis LM, Wistuba II, Qin J, Tsai SY et al (2012) ERK3 signals through SRC-3 coactivator to promote human lung cancer cell invasion. J Clin Invest 122:1869–80PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Xu YM, Zhu F, Cho YY, Carper A, Peng C, Zheng D, Yao K, Lau AT, Zykova TA, Kim HG et al (2010) Extracellular signal-regulated kinase 8-mediated c-Jun phosphorylation increases tumorigenesis of human colon cancer. Cancer Res 70:3218–27PubMedCrossRefGoogle Scholar
  15. 15.
    Lito P, Rosen N, Solit DB (2013) Tumor adaptation and resistance to RAF inhibitors. Nat Med 19:1401–9PubMedCrossRefGoogle Scholar
  16. 16.
    Tsao H, Chin L, Garraway LA, Fisher DE (2012) Melanoma: from mutations to medicine. Genes Dev 26:1131–55PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–54PubMedCrossRefGoogle Scholar
  18. 18.
    Basso AD, Kirschmeier P, Bishop WR (2006) Lipid posttranslational modifications. Farnesyl transferase inhibitors. J Lipid Res 47:15–31PubMedCrossRefGoogle Scholar
  19. 19.
    Curtin JA, Busam K, Pinkel D, Bastian BC (2006) Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 24:4340–6PubMedCrossRefGoogle Scholar
  20. 20.
    Flaherty KT (2012) Targeting metastatic melanoma. Annu Rev Med 63:171–83PubMedCrossRefGoogle Scholar
  21. 21.
    McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri A et al (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773:1263–84PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Smalley KS, Xiao M, Villanueva J, Nguyen TK, Flaherty KT, Letrero R, Van Belle P, Elder DE, Wang Y, Nathanson KL et al (2009) CRAF inhibition induces apoptosis in melanoma cells with non-V600E BRAF mutations. Oncogene 28:85–94PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N (2010) RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464:427–30PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, Cho KH, Aiba S, Bröcker EB, LeBoit PE et al (2005) Distinct sets of genetic alterations in melanoma. N Engl J Med 353:2135–47PubMedCrossRefGoogle Scholar
  25. 25.
    Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM, Moses TY, Hostetter G, Wagner U, Kakareka J et al (2003) High frequency of BRAF mutations in nevi. Nat Genet 33:19–20PubMedCrossRefGoogle Scholar
  26. 26.
    Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H, Spevak W, Zhang C, Zhang Y, Habets G et al (2010) Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467:596–9PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Hauschild A, Grob J-J, Demidov LV, Jouary T, Gutzmer R, Millward M, Rutkowski P, Blank CU, Miller WH, Kaempgen E et al (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380:358–365PubMedCrossRefGoogle Scholar
  28. 28.
    Long GV, Trefzer U, Davies MA, Kefford RF, Ascierto PA, Chapman PB, Puzanov I, Hauschild A, Robert C, Algazi A et al (2012) Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): a multicentre, open-label, phase 2 trial. Lancet Oncol 13:1087–95PubMedCrossRefGoogle Scholar
  29. 29.
    Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–16PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Zimmer L, Hillen U, Livingstone E, Lacouture ME, Busam K, Carvajal RD, Egberts F, Hauschild A, Kashani-Sabet M, Goldinger SM et al (2012) Atypical melanocytic proliferations and new primary melanomas in patients with advanced melanoma undergoing selective BRAF inhibition. J Clin Oncol 30:2375–83PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Su F, Viros A, Milagre C, Trunzer K, Bollag G, Spleiss O, Reis-Filho JS, Kong X, Koya RC, Flaherty KT et al (2012) RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med 366:207–15PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Callahan MK, Rampal R, Harding JJ, Klimek VM, Chung YR, Merghoub T, Wolchok JD, Solit DB, Rosen N, Abdel-Wahab O et al (2012) Progression of RAS-mutant leukemia during RAF inhibitor treatment. N Engl J Med 367:2316–21PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Sanchez-Laorden B, Viros A, Girotti MR, Pedersen M, Saturno G, Zambon A, Niculescu-Duvaz D, Turajlic S, Hayes A, Gore M et al (2014) BRAF inhibitors induce metastasis in RAS mutant or inhibitor-resistant melanoma cells by reactivating MEK and ERK signaling. Sci Signal 7:ra30PubMedCrossRefGoogle Scholar
  34. 34.
    Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, Davis A, Mongare MM, Gould J, Frederick DT et al (2012) Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487:500–4PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Karasic TB, Hei TK, Ivanov VN (2010) Disruption of IGF-1R signaling increases TRAIL-induced apoptosis: a new potential therapy for the treatment of melanoma. Exp Cell Res 316:1994–2007PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Montero-Conde C, Ruiz-Llorente S, Dominguez JM, Knauf JA, Viale A, Sherman EJ, Ryder M, Ghossein RA, Rosen N, Fagin JA (2013) Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Discov 3:520–33PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Paraiso KH, Fedorenko IV, Cantini LP, Munko AC, Hall M, Sondak VK, Messina JL, Flaherty KT, Smalley KS (2010) Recovery of phospho-ERK activity allows melanoma cells to escape from BRAF inhibitor therapy. Br J Cancer 102:1724–30PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M, Demidov LV, Hassel JC, Rutkowski P, Mohr P et al (2012) Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med 367:107–14PubMedCrossRefGoogle Scholar
  39. 39.
    Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, Hamid O, Schuchter L, Cebon J, Ibrahim N et al (2012) Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 367:1694–703PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Paraiso KH, Xiang Y, Rebecca VW, Abel EV, Chen YA, Munko AC, Wood E, Fedorenko IV, Sondak VK, Anderson AR et al (2011) PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res 71:2750–60PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Shaw RJ, Cantley LC (2006) Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441:424–30PubMedCrossRefGoogle Scholar
  42. 42.
    Maira SM, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C, Brachmann S, Chène P, De Pover A, Schoemaker K et al (2008) Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 7:1851–63PubMedCrossRefGoogle Scholar
  43. 43.
    Tsao H, Goel V, Wu H, Yang G, Haluska FG (2004) Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J Invest Dermatol 122:337–41PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Smalley KS, Lioni M, Dalla Palma M, Xiao M, Desai B, Egyhazi S, Hansson J, Wu H, King AJ, Van Belle P et al (2008) Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E-mutated melanomas. Mol Cancer Ther 7:2876–83PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Haluska FG, Hodi FS (1998) Molecular genetics of familial cutaneous melanoma. J Clin Oncol 16:670–82PubMedGoogle Scholar
  46. 46.
    Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, Chen Z, Lee MK, Attar N, Sazegar H et al (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–7PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Wagle N, Emery C, Berger MF, Davis MJ, Sawyer A, Pochanard P, Kehoe SM, Johannessen CM, Macconaill LE, Hahn WC et al (2011) Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol 29:3085–96PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Shi H, Moriceau G, Kong X, Lee MK, Lee H, Koya RC, Ng C, Chodon T, Scolyer RA, Dahlman KB et al (2012) Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat Commun 3:724PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C, Moriceau G, Shi H, Atefi M, Titz B, Gabay MT et al (2011) RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480:387–90PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Sun C, Wang L, Huang S, Heynen GJ, Prahallad A, Robert C, Haanen J, Blank C, Wesseling J, Willems SM et al (2014) Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature 508:118–22PubMedCrossRefGoogle Scholar
  51. 51.
    Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L, Johnson LA, Emery CM, Stransky N, Cogdill AP, Barretina J et al (2010) COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468:968–72PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Das Thakur M, Salangsang F, Landman AS, Sellers WR, Pryer NK, Levesque MP, Dummer R, McMahon M, Stuart DD (2013) Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature 494:251–5PubMedCrossRefGoogle Scholar
  53. 53.
    Cooper ZA, Frederick DT, Ahmed Z, Wargo JA (2013) Combining checkpoint inhibitors and BRAF-targeted agents against metastatic melanoma. Oncoimmunology 2:e24320PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81:153–208PubMedGoogle Scholar
  55. 55.
    Karnoub AE, Weinberg RA (2008) Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9:517–31PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Ellerhorst JA, Greene VR, Ekmekcioglu S, Warneke CL, Johnson MM, Cooke CP, Wang LE, Prieto VG, Gershenwald JE, Wei Q et al (2011) Clinical correlates of NRAS and BRAF mutations in primary human melanoma. Clin Cancer Res 17:229–35PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Nissan MH, Pratilas CA, Jones AM, Ramirez R, Won H, Liu C, Tiwari S, Kong L, Hanrahan AJ, Yao Z et al (2014) Loss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence. Cancer Res. doi:10.1158/0008-5472.CAN-13-2625 PubMedGoogle Scholar
  58. 58.
    Whittaker SR, Theurillat JP, Van Allen E, Wagle N, Hsiao J, Cowley GS, Schadendorf D, Root DE, Garraway LA (2013) A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discov 3:350–62PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Sensi M, Nicolini G, Petti C, Bersani I, Lozupone F, Molla A, Vegetti C, Nonaka D, Mortarini R, Parmiani G et al (2006) Mutually exclusive NRASQ61R and BRAFV600E mutations at the single-cell level in the same human melanoma. Oncogene 25:3357–64PubMedCrossRefGoogle Scholar
  60. 60.
    Barbacid M (1987) Ras genes. Annu Rev Biochem 56:779–827PubMedCrossRefGoogle Scholar
  61. 61.
    Lim SM, Westover KD, Ficarro SB, Harrison RA, Choi HG, Pacold ME, Carrasco M, Hunter J, Kim ND, Xie T et al (2014) Therapeutic targeting of oncogenic K-Ras by a covalent catalytic site inhibitor. Angew Chem Int Ed Engl 53:199–204PubMedCrossRefGoogle Scholar
  62. 62.
    Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM (2013) K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503:548–51PubMedCrossRefGoogle Scholar
  63. 63.
    Zimmermann G, Papke B, Ismail S, Vartak N, Chandra A, Hoffmann M, Hahn SA, Triola G, Wittinghofer A, Bastiaens PI et al (2013) Small molecule inhibition of the KRAS-PDEδ interaction impairs oncogenic KRAS signalling. Nature 497:638–42PubMedCrossRefGoogle Scholar
  64. 64.
    Chabot B, Stephenson DA, Chapman VM, Besmer P, Bernstein A (1988) The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature 335:88–9PubMedCrossRefGoogle Scholar
  65. 65.
    Kunz M (2013) Oncogenes in melanoma: an update. Eur J Cell Biol. doi:10.1016/j.ejcb.2013.12.002 PubMedGoogle Scholar
  66. 66.
    Liang J, Wu YL, Chen BJ, Zhang W, Tanaka Y, Sugiyama H (2013) The C-kit receptor-mediated signal transduction and tumor-related diseases. Int J Biol Sci 9:435–43PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Carvajal RD, Antonescu CR, Wolchok JD, Chapman PB, Roman RA, Teitcher J, Panageas KS, Busam KJ, Chmielowski B, Lutzky J et al (2011) KIT as a therapeutic target in metastatic melanoma. JAMA 305:2327–34PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ, Heinrich MC, Tuveson DA, Singer S, Janicek M et al (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347:472–80PubMedCrossRefGoogle Scholar
  69. 69.
    Qiu RG, Chen J, Kirn D, McCormick F, Symons M (1995) An essential role for Rac in Ras transformation. Nature 374:457–9PubMedCrossRefGoogle Scholar
  70. 70.
    Kissil JL, Walmsley MJ, Hanlon L, Haigis KM, Bender Kim CF, Sweet-Cordero A, Eckman MS, Tuveson DA, Capobianco AJ, Tybulewicz VL et al (2007) Requirement for Rac1 in a K-ras induced lung cancer in the mouse. Cancer Res 67:8089–94PubMedCrossRefGoogle Scholar
  71. 71.
    Coso OA, Chiariello M, Yu JC, Teramoto H, Crespo P, Xu N, Miki T, Gutkind JS (1995) The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81:1137–46PubMedCrossRefGoogle Scholar
  72. 72.
    Iavarone C, Catania A, Marinissen MJ, Visconti R, Acunzo M, Tarantino C, Carlomagno MS, Bruni CB, Gutkind JS, Chiariello M (2003) The platelet-derived growth factor controls c-myc expression through a JNK- and AP-1-dependent signaling pathway. J Biol Chem 278:50024–30PubMedCrossRefGoogle Scholar
  73. 73.
    Mack NA, Whalley HJ, Castillo-Lluva S, Malliri A (2011) The diverse roles of Rac signaling in tumorigenesis. Cell Cycle 10:1571–1581PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, Nickerson E, Auclair D, Li L, Place C et al (2012) A landscape of driver mutations in melanoma. Cell 150:251–63PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Krauthammer M, Kong Y, Ha BH, Evans P, Bacchiocchi A, McCusker JP, Cheng E, Davis MJ, Goh G, Choi M et al (2012) Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet 44:1006–14PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Li A, Ma Y, Jin M, Mason S, Mort RL, Blyth K, Larue L, Sansom OJ, Machesky LM (2012) Activated mutant NRas(Q61K) drives aberrant melanocyte signaling, survival, and invasiveness via a Rac1-dependent mechanism. J Invest Dermatol 132:2610–21PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Kawazu M, Ueno T, Kontani K, Ogita Y, Ando M, Fukumura K, Yamato A, Soda M, Takeuchi K, Miki Y et al (2013) Transforming mutations of RAC guanosine triphosphatases in human cancers. Proc Natl Acad Sci U S A 110:3029–34PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Dulak AM, Stojanov P, Peng S, Lawrence MS, Fox C, Stewart C, Bandla S, Imamura Y, Schumacher SE, Shefler E et al (2013) Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat Genet 45:478–86PubMedCrossRefGoogle Scholar
  79. 79.
    Berger MF, Hodis E, Heffernan TP, Deribe YL, Lawrence MS, Protopopov A, Ivanova E, Watson IR, Nickerson E, Ghosh P et al (2012) Melanoma genome sequencing reveals frequent PREX2 mutations. Nature 485:502–6PubMedCentralPubMedGoogle Scholar
  80. 80.
    Martin H, Mali RS, Ma P, Chatterjee A, Ramdas B, Sims E, Munugalavadla V, Ghosh J, Mattingly RR, Visconte V et al (2013) Pak and Rac GTPases promote oncogenic KIT-induced neoplasms. J Clin Invest 123:4449–63PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y (2004) Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci U S A 101:7618–23PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Montalvo-Ortiz BL, Castillo-Pichardo L, Hernández E, Humphries-Bickley T, De la Mota-Peynado A, Cubano LA, Vlaar CP, Dharmawardhane S (2012) Characterization of EHop-016, novel small molecule inhibitor of Rac GTPase. J Biol Chem 287:13228–38PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Ruffoni A, Ferri N, Bernini SK, Ricci C, Corsini A, Maffucci I, Clerici F, Contini A (2014) 2-Amino-3-(phenylsulfanyl)norbornane-2-carboxylate: an appealing scaffold for the design of Rac1-Tiam1 protein–protein interaction inhibitors. J Med Chem. doi:10.1021/jm401924s PubMedGoogle Scholar
  84. 84.
    Coupland SE, Lake SL, Zeschnigk M, Damato BE (2013) Molecular pathology of uveal melanoma. Eye (Lond) 27:230–42CrossRefGoogle Scholar
  85. 85.
    Zuidervaart W, van Nieuwpoort F, Stark M, Dijkman R, Packer L, Borgstein AM, Pavey S, van der Velden P, Out C, Jager MJ et al (2005) Activation of the MAPK pathway is a common event in uveal melanomas although it rarely occurs through mutation of BRAF or RAS. Br J Cancer 92:2032–8PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Pache M, Glatz K, Bösch D, Dirnhofer S, Mirlacher M, Simon R, Schraml P, Rufle A, Flammer J, Sauter G et al (2003) Sequence analysis and high-throughput immunohistochemical profiling of KIT (CD 117) expression in uveal melanoma using tissue microarrays. Virchows Arch 443:741–4PubMedCrossRefGoogle Scholar
  87. 87.
    Van Raamsdonk CD, Fitch KR, Fuchs H, de Angelis MH, Barsh GS (2004) Effects of G-protein mutations on skin color. Nat Genet 36:961–8PubMedCrossRefGoogle Scholar
  88. 88.
    Van Raamsdonk CD, Griewank KG, Crosby MB, Garrido MC, Vemula S, Wiesner T, Obenauf AC, Wackernagel W, Green G, Bouvier N et al (2010) Mutations in GNA11 in uveal melanoma. N Engl J Med 363:2191–9PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Van Raamsdonk CD, Bezrookove V, Green G, Bauer J, Gaugler L, O'Brien JM, Simpson EM, Barsh GS, Bastian BC (2009) Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457:599–602PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Onken MD, Worley LA, Long MD, Duan S, Council ML, Bowcock AM, Harbour JW (2008) Oncogenic mutations in GNAQ occur early in uveal melanoma. Invest Ophthalmol Vis Sci 49:5230–4PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Marinissen MJ, Gutkind JS (2001) G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 22:368–76PubMedCrossRefGoogle Scholar
  92. 92.
    O'Hayre M, Vázquez-Prado J, Kufareva I, Stawiski EW, Handel TM, Seshagiri S, Gutkind JS (2013) The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat Rev Cancer 13:412–24PubMedCrossRefGoogle Scholar
  93. 93.
    Nikolaev SI, Rimoldi D, Iseli C, Valsesia A, Robyr D, Gehrig C, Harshman K, Guipponi M, Bukach O, Zoete V et al (2012) Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nat Genet 44:133–9CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico IINaplesItaly
  2. 2.Core Research Laboratory and Istituto di Fisiologia ClinicaIstituto Toscano Tumori and Consiglio Nazionale delle RicercheSienaItaly

Personalised recommendations