Journal of Molecular Medicine

, Volume 92, Issue 10, pp 1069–1082 | Cite as

NLRP3 inflammasome activation is required for fibrosis development in NAFLD

  • Alexander Wree
  • Matthew D. McGeough
  • Carla A. Peña
  • Martin Schlattjan
  • Hongying Li
  • Maria Eugenia Inzaugarat
  • Karen Messer
  • Ali Canbay
  • Hal M. Hoffman
  • Ariel E. FeldsteinEmail author
Original Article


NLR inflammasomes, caspase 1 activation platforms critical for processing key pro-inflammatory cytokines, have been implicated in the development of nonalcoholic fatty liver disease (NAFLD). As the direct role of the NLRP3 inflammasome remains unclear, we tested effects of persistent NLRP3 activation as a contributor to NAFLD development and, in particular, as a modulator of progression from benign hepatic steatosis to steatohepatitis during diet-induced NAFLD. Gain of function tamoxifen-inducible Nlrp3 knock-in mice allowing for in vivo temporal control of NLRP3 activation and loss of function Nlrp3 knockout mice were placed on short-term choline-deficient amino acid-defined (CDAA) diet, to induce isolated hepatic steatosis or long-term CDAA exposure, to induce severe steatohepatitis and fibrosis, respectively. Expression of NLRP3 associated proteins was assessed in liver biopsies of a well-characterized group of patients with the full spectrum of NAFLD. Nlrp3 −/− mice were protected from long-term feeding CDAA-induced hepatomegaly, liver injury, and infiltration of activated macrophages. More importantly, Nlrp3 −/− mice showed marked protection from CDAA-induced liver fibrosis. After 4 weeks on CDAA diet, wild-type (WT) animals showed isolated hepatic steatosis while Nlrp3 knock-in mice showed severe liver inflammation, with increased infiltration of activated macrophages and early signs of liver fibrosis. In the liver samples of patients with NAFLD, inflammasome components were significantly increased in those patients with nonalcoholic steatohepatitis (NASH) when compared to those with non-NASH NAFLD with mRNA levels of pro-IL1 beta correlated to levels of COL1A1. Our study uncovers a crucial role for the NLRP3 inflammasome in the development of NAFLD. These findings may lead to novel therapeutic strategies aimed at halting the progression of hepatic steatosis to the more severe forms of this disease.

Key message

  • Mice with NLRP3 inflammasome loss of function are protected from diet-induced steatohepatitis.

  • NLRP3 inflammasome gain of function leads to early and severe onset of diet-induced steatohepatitis in mice.

  • Patients with severe NAFLD exhibit increased levels of NLRP3 inflammasome components and levels of pro-IL1β mRNA correlate with the expression of COL1A1.


NLRP3 Inflammation Liver fibrosis NASH Steatoheptatitis 



Alpha smooth muscle actin


Alanine aminotransferase


Apoptosis-associated speck-like protein containing a caspase recruitment domain


Arginase 1


Alcoholic steatohepatitis


Body mass index


Caspase 1


Choline-deficient amino acid-defined


Collagen, type I, alpha 1


Choline-supplemented amino acid-defined


Connective tissue growth factor


Chemokine (C-X-C motif) ligand 2


Damage associated molecular patterns


Murine macrophage marker


Hepatic stellate cell


Intercellular adhesion molecule 1




Inducible form of nitric oxide synthase


Lymphocyte antigen 6 complex


Monocyte chemotactic protein-1


Matrix metalloproteinase-2




Nonalcoholic fatty liver disease


Nonalcoholic steatohepatitis


Normal chow


Nucleotide-binding oligomerization domain (NOD) leucine-rich-repeat containing receptors


Pathogen associated molecular patterns


Phosphate-buffered saline


Tissue inhibitor of matrix metalloproteinase 1


Tumor necrosis factor alpha


Wild type



We thank Martin Pronadl and Rudolf Ott from the Clinic of Surgery II at Alfried Krupp Hospital Essen, Germany, for collecting tissue and serum samples during bariatric surgeries and clinical follow up of the enrolled patients. We thank Bettina Papouchado for assessing steatosis, inflammation, and ballooning in the liver samples. This work was funded by NIH (DK076852 and DK082451 to AEF and AI52430 to HMH) and the German Research Foundation (DFG-grant 173/2-1 to AW).

Conflict of interest

The authors state that they have nothing to disclose.

Supplementary material

109_2014_1170_MOESM1_ESM.docx (17 kb)
Supplemental Table 1 (DOCX 17 kb)


  1. 1.
    Levene AP, Goldin RD (2012) The epidemiology, pathogenesis and histopathology of fatty liver disease. Histopathology 61:141–152PubMedCrossRefGoogle Scholar
  2. 2.
    Vernon G, Baranova A, Younossi ZM (2011) Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther 34:274–285PubMedCrossRefGoogle Scholar
  3. 3.
    Mahady SE, George J (2012) Management of nonalcoholic steatohepatitis: an evidence-based approach. Clin Liver Dis 16:631–645PubMedCrossRefGoogle Scholar
  4. 4.
    Adams LA, Lymp JF, St Sauver J, Sanderson SO, Lindor KD, Feldstein A, Angulo P (2005) The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 129:113–121PubMedCrossRefGoogle Scholar
  5. 5.
    Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, McCullough AJ (1999) Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology 116:1413–1419PubMedCrossRefGoogle Scholar
  6. 6.
    Brunt EM (2002) Alcoholic and nonalcoholic steatohepatitis. Clin Liver Dis 6:399–420, viiPubMedCrossRefGoogle Scholar
  7. 7.
    Hjelkrem MC, Torres DM, Harrison SA (2008) Nonalcoholic fatty liver disease. Minerva Med 99:583–593PubMedGoogle Scholar
  8. 8.
    Bechmann LP, Hannivoort RA, Gerken G, Hotamisligil GS, Trauner M, Canbay A (2012) The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol 56:952–964PubMedCrossRefGoogle Scholar
  9. 9.
    Wree A, Kahraman A, Gerken G, Canbay A (2011) Obesity affects the liver—the link between adipocytes and hepatocytes. Digestion 83:124–133PubMedCrossRefGoogle Scholar
  10. 10.
    Tilg H, Moschen AR (2010) Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52:1836–1846PubMedCrossRefGoogle Scholar
  11. 11.
    Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426PubMedCrossRefGoogle Scholar
  12. 12.
    Netea MG, van der Meer JW (2011) Immunodeficiency and genetic defects of pattern-recognition receptors. N Engl J Med 364:60–70PubMedCrossRefGoogle Scholar
  13. 13.
    Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820PubMedCrossRefGoogle Scholar
  14. 14.
    Szabo G, Csak T (2012) Inflammasomes in liver diseases. J Hepatol 57:642–654PubMedCrossRefGoogle Scholar
  15. 15.
    Kubes P, Mehal WZ (2012) Sterile inflammation in the liver. Gastroenterology 143:1158–1172PubMedCrossRefGoogle Scholar
  16. 16.
    Kamari Y, Shaish A, Vax E, Shemesh S, Kandel-Kfir M, Arbel Y, Olteanu S, Barshack I, Dotan S, Voronov E et al (2011) Lack of interleukin-1alpha or interleukin-1beta inhibits transformation of steatosis to steatohepatitis and liver fibrosis in hypercholesterolemic mice. J Hepatol 55:1086–1094PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    de Roos B, Rungapamestry V, Ross K, Rucklidge G, Reid M, Duncan G, Horgan G, Toomey S, Browne J, Loscher CE et al (2009) Attenuation of inflammation and cellular stress-related pathways maintains insulin sensitivity in obese type I interleukin-1 receptor knockout mice on a high-fat diet. Proteomics 9:3244–3256PubMedCrossRefGoogle Scholar
  18. 18.
    Dixon LJ, Berk M, Thapaliya S, Papouchado BG, Feldstein AE (2012) Caspase-1-mediated regulation of fibrogenesis in diet-induced steatohepatitis. Lab Investig J Tech Methods Pathol 92:713–723CrossRefGoogle Scholar
  19. 19.
    Wree A, Eguchi A, McGeough MD, Pena CA, Johnson CD, Canbay A, Hoffman HM, Feldstein AE (2013) NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation and fibrosis. Hepatology 59:898–910 Google Scholar
  20. 20.
    Kodama Y, Kisseleva T, Iwaisako K, Miura K, Taura K, De Minicis S, Osterreicher CH, Schnabl B, Seki E, Brenner DA (2009) c-Jun N-terminal kinase-1 from hematopoietic cells mediates progression from hepatic steatosis to steatohepatitis and fibrosis in mice. Gastroenterology 137:1467–1477, e1465PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Sutterwala FS, Ogura Y, Szczepanik M, Lara-Tejero M, Lichtenberger GS, Grant EP, Bertin J, Coyle AJ, Galan JE, Askenase PW et al (2006) Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24:317–327PubMedCrossRefGoogle Scholar
  22. 22.
    Brydges SD, Mueller JL, McGeough MD, Pena CA, Misaghi A, Gandhi C, Putnam CD, Boyle DL, Firestein GS, Horner AA et al (2009) Inflammasome-mediated disease animal models reveal roles for innate but not adaptive immunity. Immunity 30:875–887PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Hayashi S, McMahon AP (2002) Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol 244:305–318PubMedCrossRefGoogle Scholar
  24. 24.
    McGeough MD, Pena CA, Mueller JL, Pociask DA, Broderick L, Hoffman HM, Brydges SD (2012) Cutting edge: IL-6 is a marker of inflammation with no direct role in inflammasome-mediated mouse models. J Immunol 189:2707–2711PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Nakae D, Yoshiji H, Mizumoto Y, Horiguchi K, Shiraiwa K, Tamura K, Denda A, Konishi Y (1992) High incidence of hepatocellular carcinomas induced by a choline deficient L-amino acid defined diet in rats. Cancer Res 52:5042–5045PubMedGoogle Scholar
  26. 26.
    Kahraman A, Sowa JP, Schlattjan M, Sydor S, Pronadl M, Wree A, Beilfuss A, Kilicarslan A, Altinbas A, Bechmann LP et al (2013) Fetuin-A mRNA expression is elevated in NASH compared with NAFL patients. Clin Sci 125:391–400PubMedCrossRefGoogle Scholar
  27. 27.
    Kalsch J, Bechmann LP, Kalsch H, Schlattjan M, Erhard J, Gerken G, Canbay A (2011) Evaluation of biomarkers of NAFLD in a cohort of morbidly obese patients. J Nutr Metab 2011: 369168. doi: 10.1155/2011/369168
  28. 28.
    Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS, Unalp-Arida A et al (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–1321PubMedCrossRefGoogle Scholar
  29. 29.
    Petrasek J, Bala S, Csak T, Lippai D, Kodys K, Menashy V, Barrieau M, Min SY, Kurt-Jones EA, Szabo G (2012) IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J Clin Invest 122:3476–3489PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Miura K, Kodama Y, Inokuchi S, Schnabl B, Aoyama T, Ohnishi H, Olefsky JM, Brenner DA, Seki E (2010) Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology 139(323–334):e327Google Scholar
  31. 31.
    Dixon LJ, Flask CA, Papouchado BG, Feldstein AE, Nagy LE (2013) Caspase-1 as a central regulator of high fat diet-induced non-alcoholic steatohepatitis. PLoS One 8:e56100PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Watanabe A, Sohail MA, Gomes DA, Hashmi A, Nagata J, Sutterwala FS, Mahmood S, Jhandier MN, Shi Y, Flavell RA et al (2009) Inflammasome-mediated regulation of hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 296:G1248–G1257PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Wen H, Gris D, Lei Y, Jha S, Zhang L, Huang MT, Brickey WJ, Ting JP (2011) Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 12:408–415PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, Ravussin E, Stephens JM, Dixit VD (2011) The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 17:179–188PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, Thaiss CA, Kau AL, Eisenbarth SC, Jurczak MJ et al (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482:179–185PubMedPubMedCentralGoogle Scholar
  36. 36.
    Eisener-Dorman AF, Lawrence DA, Bolivar VJ (2009) Cautionary insights on knockout mouse studies: the gene or not the gene? Brain Behav Immun 23:318–324PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Davey RA, MacLean HE (2006) Current and future approaches using genetically modified mice in endocrine research. Am J Physiol Endocrinol Metab 291:E429–E438PubMedCrossRefGoogle Scholar
  38. 38.
    Csak T, Ganz M, Pespisa J, Kodys K, Dolganiuc A, Szabo G (2011) Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology 54:133–144PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Rizki G, Arnaboldi L, Gabrielli B, Yan J, Lee GS, Ng RK, Turner SM, Badger TM, Pitas RE, Maher JJ (2006) Mice fed a lipogenic methionine-choline-deficient diet develop hypermetabolism coincident with hepatic suppression of SCD-1. J Lipid Res 47:2280–2290PubMedCrossRefGoogle Scholar
  40. 40.
    Oosterveer MH, van Dijk TH, Tietge UJ, Boer T, Havinga R, Stellaard F, Groen AK, Kuipers F, Reijngoud DJ (2009) High fat feeding induces hepatic fatty acid elongation in mice. PLoS One 4:e6066PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    de Almeida IT, Cortez-Pinto H, Fidalgo G, Rodrigues D, Camilo ME (2002) Plasma total and free fatty acids composition in human non-alcoholic steatohepatitis. Clin Nutr 21:219–223PubMedCrossRefGoogle Scholar
  42. 42.
    Puri P, Wiest MM, Cheung O, Mirshahi F, Sargeant C, Min HK, Contos MJ, Sterling RK, Fuchs M, Zhou H et al (2009) The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology 50:1827–1838PubMedCrossRefGoogle Scholar
  43. 43.
    Wree A, Bechmann LP, Claudel T, Schlattjan M, Sowa JP, Baba H, Gerken G, Feldstein AE, Trauner M, Canbay A (2013) Bariatric surgery reduces adipocyte size, improves liver injury and counteracts lipotoxicity via changes in serum fatty acid composition and adiponectin levels. J Hepatol 58:S553Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alexander Wree
    • 1
    • 2
  • Matthew D. McGeough
    • 1
  • Carla A. Peña
    • 1
  • Martin Schlattjan
    • 2
  • Hongying Li
    • 3
  • Maria Eugenia Inzaugarat
    • 4
  • Karen Messer
    • 3
  • Ali Canbay
    • 2
  • Hal M. Hoffman
    • 1
    • 5
  • Ariel E. Feldstein
    • 1
    Email author
  1. 1.Department of PediatricsUniversity of California, San DiegoLa JollaUSA
  2. 2.Department of Gastroenterology and HepatologyUniversity Hospital EssenEssenGermany
  3. 3.Biostatistics and Bioinformatics Group, Moores Cancer CenterUniversity of California, San DiegoLa JollaUSA
  4. 4.Institute of Immunology, Genetics and MetabolismCONICET-UBABuenos AiresArgentina
  5. 5.Ludwig Institute of Cancer Research, San DiegoLa JollaUSA

Personalised recommendations