Journal of Molecular Medicine

, Volume 92, Issue 6, pp 555–569 | Cite as

Ubiquitous points of control over regulatory T cells

  • Fan Pan
  • Joseph Barbi


Posttranslational modification by ubiquitin tagging is crucial for regulating the stability, activity and cellular localization of many target proteins involved in processes including DNA repair, cell cycle progression, protein quality control, and signal transduction. It has long been appreciated that ubiquitin-mediated events are important for certain signaling pathways leading to leukocyte activation and the stimulation of effector function. Now it is clear that the activities of molecules and pathways central to immune regulation are also modified and controlled by ubiquitin tagging. Among the mechanisms of immune control, regulatory T cells (or Tregs) are themselves particularly sensitive to such regulation. E3 ligases and deubiquitinases both influence Tregs through their effects on the signaling pathways pertinent to these cells or through the direct, posttranslational regulation of Foxp3. In this review, we will summarize and discuss several examples of ubiquitin-mediated control over multiple aspects of Treg biology including the generation, function and phenotypic fidelity of these cells. Fully explored and exploited, these potential opportunities for Treg modulation may lead to novel immunotherapies for both positive and negative fine-tuning of immune restraint.


E3 ligase Foxp3 Treg Ubiquitin Deubiquitinase 



The Authors declare no financial conflicts of interest. Funding support comes from grants from the Melanoma Research Alliance, the National Institutes of Health (RO1AI099300 and RO1AI089830), “Kelly’s Dream” Foundation, the Janey Fund, and the Seraph Foundation, and gifts from Bill and Betty Topecer and Dorothy Needle. FP is a Stewart Trust Scholar, JB is supported by a Crohn’s and Colitis Foundation of America Research Fellowship.


  1. 1.
    Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133:775–787PubMedGoogle Scholar
  2. 2.
    Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8:523–532PubMedCentralPubMedGoogle Scholar
  3. 3.
    Hori S (2011) Stability of regulatory T-cell lineage. Adv Immunol 112:1–24PubMedGoogle Scholar
  4. 4.
    Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, Parizot C, Taflin C, Heike T, Valeyre D et al (2009) Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30:899–911PubMedGoogle Scholar
  5. 5.
    Koch MA, Tucker-Heard G, Perdue NR, Killebrew JR, Urdahl KB, Campbell DJ (2009) The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat Immunol 10:595–602PubMedCentralPubMedGoogle Scholar
  6. 6.
    Hall AO, Beiting DP, Tato C, John B, Oldenhove G, Lombana CG, Pritchard GH, Silver JS, Bouladoux N, Stumhofer JS et al (2012) The cytokines interleukin 27 and interferon-gamma promote distinct Treg cell populations required to limit infection-induced pathology. Immunity 37:511–523PubMedCentralPubMedGoogle Scholar
  7. 7.
    Sharma MD, Huang L, Choi JH, Lee EJ, Wilson JM, Lemos H, Pan F, Blazar BR, Pardoll DM, Mellor AL et al (2013) An inherently bifunctional subset of Foxp3+ T helper cells is controlled by the transcription factor eos. Immunity 38:998–1012PubMedGoogle Scholar
  8. 8.
    Josefowicz SZ, Niec RE, Kim HY, Treuting P, Chinen T, Zheng Y, Umetsu DT, Rudensky AY (2012) Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 482:395–399PubMedCentralPubMedGoogle Scholar
  9. 9.
    Williams LM, Rudensky AY (2007) Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat Immunol 8:277–284PubMedGoogle Scholar
  10. 10.
    Pan F, Yu H, Dang EV, Barbi J, Pan X, Grosso JF, Jinasena D, Sharma SM, McCadden EM, Getnet D et al (2009) Eos mediates Foxp3-dependent gene silencing in CD4+ regulatory T cells. Science 325:1142–1146PubMedCentralPubMedGoogle Scholar
  11. 11.
    Fu W, Ergun A, Lu T, Hill JA, Haxhinasto S, Fassett MS, Gazit R, Adoro S, Glimcher L, Chan S et al (2012) A multiply redundant genetic switch ‘locks in’ the transcriptional signature of regulatory T cells. Nat Immunol 13:972–980PubMedCentralPubMedGoogle Scholar
  12. 12.
    Zheng Y, Chaudhry A, Kas A, deRoos P, Kim JM, Chu TT, Corcoran L, Treuting P, Klein U, Rudensky AY (2009) Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature 458:351–356PubMedCentralPubMedGoogle Scholar
  13. 13.
    Darce J, Rudra D, Li L, Nishio J, Cipolletta D, Rudensky AY, Mathis D, Benoist C (2012) An N-terminal mutation of the Foxp3 transcription factor alleviates arthritis but exacerbates diabetes. Immunity 36:731–741PubMedCentralPubMedGoogle Scholar
  14. 14.
    Bettini ML, Pan F, Bettini M, Finkelstein D, Rehg JE, Floess S, Bell BD, Ziegler SF, Huehn J, Pardoll DM et al (2012) Loss of epigenetic modification driven by the Foxp3 transcription factor leads to regulatory T cell insufficiency. Immunity 36:717–730PubMedCentralPubMedGoogle Scholar
  15. 15.
    Kerscher O, Felberbaum R, Hochstrasser M (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22:159–180PubMedGoogle Scholar
  16. 16.
    Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479PubMedGoogle Scholar
  17. 17.
    Jackson PK, Eldridge AG, Freed E, Furstenthal L, Hsu JY, Kaiser BK, Reimann JD (2000) The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol 10:429–439PubMedGoogle Scholar
  18. 18.
    Gao M, Karin M (2005) Regulating the regulators: control of protein ubiquitination and ubiquitin-like modifications by extracellular stimuli. Mol Cell 19:581–593PubMedGoogle Scholar
  19. 19.
    Zinngrebe J, Montinaro A, Peltzer N, Walczak H (2014) Ubiquitin in the immune system. EMBO Rep 15:28–45PubMedGoogle Scholar
  20. 20.
    Komander D, Clague MJ, Urbe S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10:550–563PubMedGoogle Scholar
  21. 21.
    Reyes-Turcu FE, Ventii KH, Wilkinson KD (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78:363–397PubMedGoogle Scholar
  22. 22.
    Schmitt EG, Williams CB (2013) Generation and function of induced regulatory T cells. Front Immunol 4:152PubMedCentralPubMedGoogle Scholar
  23. 23.
    Qiao G, Zhao Y, Li Z, Tang PQ, Langdon WY, Yang T, Zhang J (2013) T cell activation threshold regulated by E3 ubiquitin ligase Cbl-b determines fate of inducible regulatory T cells. J Immunol 191:632–639PubMedGoogle Scholar
  24. 24.
    Bachmaier K, Krawczyk C, Kozieradzki I, Kong YY, Sasaki T, Oliveira-dos-Santos A, Mariathasan S, Bouchard D, Wakeham A, Itie A et al (2000) Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 403:211–216PubMedGoogle Scholar
  25. 25.
    Wohlfert EA, Callahan MK, Clark RB (2004) Resistance to CD4 + CD25+ regulatory T cells and TGF-beta in Cbl-b−/− mice. J Immunol 173:1059–1065PubMedGoogle Scholar
  26. 26.
    Adams CO, Housley WJ, Bhowmick S, Cone RE, Rajan TV, Forouhar F, Clark RB (2010) Cbl-b(−/−) T cells demonstrate in vivo resistance to regulatory T cells but a context-dependent resistance to TGF-beta. J Immunol 185:2051–2058PubMedGoogle Scholar
  27. 27.
    Haxhinasto S, Mathis D, Benoist C (2008) The AKT-mTOR axis regulates de novo differentiation of CD4 + Foxp3+ cells. J Exp Med 205:565–574PubMedCentralPubMedGoogle Scholar
  28. 28.
    Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, Knight ZA, Cobb BS, Cantrell D, O’Connor E et al (2008) T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci U S A 105:7797–7802PubMedCentralPubMedGoogle Scholar
  29. 29.
    Ouyang W, Beckett O, Ma Q, Paik JH, DePinho RA, Li MO (2010) Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat Immunol 11:618–627PubMedGoogle Scholar
  30. 30.
    Harada Y, Elly C, Ying G, Paik JH, DePinho RA, Liu YC (2010) Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells. J Exp Med 207:1381–1391PubMedCentralPubMedGoogle Scholar
  31. 31.
    Fang D, Wang HY, Fang N, Altman Y, Elly C, Liu YC (2001) Cbl-b, a RING-type E3 ubiquitin ligase, targets phosphatidylinositol 3-kinase for ubiquitination in T cells. J Biol Chem 276:4872–4878PubMedGoogle Scholar
  32. 32.
    Fang D, Liu YC (2001) Proteolysis-independent regulation of PI3K by Cbl-b-mediated ubiquitination in T cells. Nat Immunol 2:870–875PubMedGoogle Scholar
  33. 33.
    Wohlfert EA, Gorelik L, Mittler R, Flavell RA, Clark RB (2006) Cutting edge: deficiency in the E3 ubiquitin ligase Cbl-b results in a multifunctional defect in T cell TGF-beta sensitivity in vitro and in vivo. J Immunol 176:1316–1320PubMedGoogle Scholar
  34. 34.
    Gruber T, Hinterleitner R, Hermann-Kleiter N, Meisel M, Kleiter I, Wang CM, Viola A, Pfeifhofer-Obermair C, Baier G (2013) Cbl-b mediates TGFbeta sensitivity by downregulating inhibitory SMAD7 in primary T cells. J Mol Cell Biol 5:358–368PubMedGoogle Scholar
  35. 35.
    Dominitzki S, Fantini MC, Neufert C, Nikolaev A, Galle PR, Scheller J, Monteleone G, Rose-John S, Neurath MF, Becker C (2007) Cutting edge: trans-signaling via the soluble IL-6R abrogates the induction of FoxP3 in naive CD4 + CD25 T cells. J Immunol 179:2041–2045PubMedGoogle Scholar
  36. 36.
    Venuprasad K, Elly C, Gao M, Salek-Ardakani S, Harada Y, Luo JL, Yang C, Croft M, Inoue K, Karin M et al (2006) Convergence of Itch-induced ubiquitination with MEKK1-JNK signaling in Th2 tolerance and airway inflammation. J Clin Invest 116:1117–1126PubMedCentralPubMedGoogle Scholar
  37. 37.
    Bai Y, Yang C, Hu K, Elly C, Liu YC (2004) Itch E3 ligase-mediated regulation of TGF-beta signaling by modulating smad2 phosphorylation. Mol Cell 15:825–831PubMedGoogle Scholar
  38. 38.
    Venuprasad K, Huang H, Harada Y, Elly C, Subramaniam M, Spelsberg T, Su J, Liu YC (2008) The E3 ubiquitin ligase Itch regulates expression of transcription factor Foxp3 and airway inflammation by enhancing the function of transcription factor TIEG1. Nat Immunol 9:245–253PubMedCentralPubMedGoogle Scholar
  39. 39.
    Peng DJ, Zeng M, Muromoto R, Matsuda T, Shimoda K, Subramaniam M, Spelsberg TC, Wei WZ, Venuprasad K (2011) Noncanonical K27-linked polyubiquitination of TIEG1 regulates Foxp3 expression and tumor growth. J Immunol 186:5638–5647PubMedCentralPubMedGoogle Scholar
  40. 40.
    Wang D, Qin H, Du W, Shen YW, Lee WH, Riggs AD, Liu CP (2012) Inhibition of S-phase kinase-associated protein 2 (Skp2) reprograms and converts diabetogenic T cells to Foxp3+ regulatory T cells. Proc Natl Acad Sci U S A 109:9493–9498PubMedCentralPubMedGoogle Scholar
  41. 41.
    Lee YK, Mukasa R, Hatton RD, Weaver CT (2009) Developmental plasticity of Th17 and Treg cells. Curr Opin Immunol 21:274–280PubMedGoogle Scholar
  42. 42.
    Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238PubMedGoogle Scholar
  43. 43.
    Nakayama K, Frew IJ, Hagensen M, Skals M, Habelhah H, Bhoumik A, Kadoya T, Erdjument-Bromage H, Tempst P, Frappell PB et al (2004) Siah2 regulates stability of prolyl-hydroxylases, controls HIF1alpha abundance, and modulates physiological responses to hypoxia. Cell 117:941–952PubMedGoogle Scholar
  44. 44.
    Semenza GL (2007) Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE 2007: cm8. doi: 10.1126/stke.4072007cm8
  45. 45.
    Lecker SH, Goldberg AL, Mitch WE (2006) Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 17:1807–1819PubMedGoogle Scholar
  46. 46.
    Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, Bordman Z, Fu J, Kim Y, Yen HR et al (2011) Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 146:772–784PubMedCentralPubMedGoogle Scholar
  47. 47.
    Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, Chi H (2011) HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 208:1367–1376PubMedCentralPubMedGoogle Scholar
  48. 48.
    Kim JS, Sklarz T, Banks LB, Gohil M, Waickman AT, Skuli N, Krock BL, Luo CT, Hu W, Pollizzi KN et al (2013) Natural and inducible TH17 cells are regulated differently by Akt and mTOR pathways. Nat Immunol 14:611–618PubMedCentralPubMedGoogle Scholar
  49. 49.
    Clambey ET, McNamee EN, Westrich JA, Glover LE, Campbell EL, Jedlicka P, de Zoeten EF, Cambier JC, Stenmark KR, Colgan SP et al (2012) Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc Natl Acad Sci U S A 109:E2784–E2793PubMedCentralPubMedGoogle Scholar
  50. 50.
    Burocchi A, Colombo MP, Piconese S (2013) Convergences and divergences of thymus- and peripherally derived regulatory T cells in cancer. Front Immunol 4:247PubMedCentralPubMedGoogle Scholar
  51. 51.
    Wang C, Lee JH, Kim CH (2012) Optimal population of FoxP3+ T cells in tumors requires an antigen priming-dependent trafficking receptor switch. PLoS One 7:e30793PubMedCentralPubMedGoogle Scholar
  52. 52.
    Hindley JP, Ferreira C, Jones E, Lauder SN, Ladell K, Wynn KK, Betts GJ, Singh Y, Price DA, Godkin AJ et al (2011) Analysis of the T-cell receptor repertoires of tumor-infiltrating conventional and regulatory T cells reveals no evidence for conversion in carcinogen-induced tumors. Cancer Res 71:736–746PubMedCentralPubMedGoogle Scholar
  53. 53.
    Luo W, Zhong J, Chang R, Hu H, Pandey A, Semenza GL (2010) Hsp70 and CHIP selectively mediate ubiquitination and degradation of hypoxia-inducible factor (HIF)-1alpha but Not HIF-2alpha. J Biol Chem 285:3651–3663PubMedCentralPubMedGoogle Scholar
  54. 54.
    Ikejiri A, Nagai S, Goda N, Kurebayashi Y, Osada-Oka M, Takubo K, Suda T, Koyasu S (2012) Dynamic regulation of Th17 differentiation by oxygen concentrations. Int Immunol 24:137–146PubMedGoogle Scholar
  55. 55.
    Eckert DJ, Malhotra A (2008) Pathophysiology of adult obstructive sleep apnea. Proc Am Thorac Soc 5:144–153PubMedCentralPubMedGoogle Scholar
  56. 56.
    Ye J, Liu H, Zhang G, Li P, Wang Z, Huang S, Yang Q, Li Y (2012) The treg/th17 imbalance in patients with obstructive sleep apnoea syndrome. Mediat Inflamm 2012:815308Google Scholar
  57. 57.
    Josefowicz SZ, Rudensky A (2009) Control of regulatory T cell lineage commitment and maintenance. Immunity 30:616–625PubMedGoogle Scholar
  58. 58.
    Gupta S, Manicassamy S, Vasu C, Kumar A, Shang W, Sun Z (2008) Differential requirement of PKC-theta in the development and function of natural regulatory T cells. Mol Immunol 46:213–224PubMedCentralPubMedGoogle Scholar
  59. 59.
    Barnes MJ, Krebs P, Harris N, Eidenschenk C, Gonzalez-Quintial R, Arnold CN, Crozat K, Sovath S, Moresco EM, Theofilopoulos AN et al (2009) Commitment to the regulatory T cell lineage requires CARMA1 in the thymus but not in the periphery. PLoS Biol 7:e51PubMedGoogle Scholar
  60. 60.
    Schmidt-Supprian M, Tian J, Grant EP, Pasparakis M, Maehr R, Ovaa H, Ploegh HL, Coyle AJ, Rajewsky K (2004) Differential dependence of CD4 + CD25+ regulatory and natural killer-like T cells on signals leading to NF-kappaB activation. Proc Natl Acad Sci U S A 101:4566–4571PubMedCentralPubMedGoogle Scholar
  61. 61.
    Medoff BD, Sandall BP, Landry A, Nagahama K, Mizoguchi A, Luster AD, Xavier RJ (2009) Differential requirement for CARMA1 in agonist-selected T-cell development. Eur J Immunol 39:78–84PubMedCentralPubMedGoogle Scholar
  62. 62.
    Paul S, Schaefer BC (2013) A new look at T cell receptor signaling to nuclear factor-kappaB. Trends Immunol 34:269–281PubMedGoogle Scholar
  63. 63.
    Isomura I, Palmer S, Grumont RJ, Bunting K, Hoyne G, Wilkinson N, Banerjee A, Proietto A, Gugasyan R, Wu L et al (2009) c-Rel is required for the development of thymic Foxp3+ CD4 regulatory T cells. J Exp Med 206:3001–3014PubMedCentralPubMedGoogle Scholar
  64. 64.
    Long M, Park SG, Strickland I, Hayden MS, Ghosh S (2009) Nuclear factor-kappaB modulates regulatory T cell development by directly regulating expression of Foxp3 transcription factor. Immunity 31:921–931PubMedGoogle Scholar
  65. 65.
    Ruan Q, Kameswaran V, Tone Y, Li L, Liou HC, Greene MI, Tone M, Chen YH (2009) Development of Foxp3(+) regulatory t cells is driven by the c-Rel enhanceosome. Immunity 31:932–940PubMedCentralPubMedGoogle Scholar
  66. 66.
    Vang KB, Yang J, Pagan AJ, Li LX, Wang J, Green JM, Beg AA, Farrar MA (2010) Cutting edge: CD28 and c-Rel-dependent pathways initiate regulatory T cell development. J Immunol 184:4074–4077PubMedCentralPubMedGoogle Scholar
  67. 67.
    Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY (2010) Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463:808–812PubMedCentralPubMedGoogle Scholar
  68. 68.
    Deenick EK, Elford AR, Pellegrini M, Hall H, Mak TW, Ohashi PS (2010) c-Rel but not NF-kappaB1 is important for T regulatory cell development. Eur J Immunol 40:677–681PubMedGoogle Scholar
  69. 69.
    Visekruna A, Huber M, Hellhund A, Bothur E, Reinhard K, Bollig N, Schmidt N, Joeris T, Lohoff M, Steinhoff U (2010) c-Rel is crucial for the induction of Foxp3(+) regulatory CD4(+) T cells but not T(H)17 cells. Eur J Immunol 40:671–676PubMedGoogle Scholar
  70. 70.
    Grigoriadis G, Vasanthakumar A, Banerjee A, Grumont R, Overall S, Gleeson P, Shannon F, Gerondakis S (2011) c-Rel controls multiple discrete steps in the thymic development of Foxp3+ CD4 regulatory T cells. PLoS One 6:e26851PubMedCentralPubMedGoogle Scholar
  71. 71.
    Molinero LL, Miller ML, Evaristo C, Alegre ML (2011) High TCR stimuli prevent induced regulatory T cell differentiation in a NF-kappaB-dependent manner. J Immunol 186:4609–4617PubMedCentralPubMedGoogle Scholar
  72. 72.
    Zanin-Zhorov A, Ding Y, Kumari S, Attur M, Hippen KL, Brown M, Blazar BR, Abramson SB, Lafaille JJ, Dustin ML (2010) Protein kinase C-theta mediates negative feedback on regulatory T cell function. Science 328:372–376PubMedCentralPubMedGoogle Scholar
  73. 73.
    Chen E, Hrdlickova R, Nehyba J, Longo DL, Bose HR Jr, Li CC (1998) Degradation of proto-oncoprotein c-Rel by the ubiquitin-proteasome pathway. J Biol Chem 273:35201–35207PubMedGoogle Scholar
  74. 74.
    Chang M, Jin W, Chang JH, Xiao Y, Brittain GC, Yu J, Zhou X, Wang YH, Cheng X, Li P et al (2011) The ubiquitin ligase Peli1 negatively regulates T cell activation and prevents autoimmunity. Nat Immunol 12:1002–1009PubMedCentralPubMedGoogle Scholar
  75. 75.
    Tze LE, Horikawa K, Domaschenz H, Howard DR, Roots CM, Rigby RJ, Way DA, Ohmura-Hoshino M, Ishido S, Andoniou CE et al (2011) CD83 increases MHC II and CD86 on dendritic cells by opposing IL-10-driven MARCH1-mediated ubiquitination and degradation. J Exp Med 208:149–165PubMedCentralPubMedGoogle Scholar
  76. 76.
    Oh J, Wu N, Baravalle G, Cohn B, Ma J, Lo B, Mellman I, Ishido S, Anderson M, Shin JS (2013) MARCH1-mediated MHCII ubiquitination promotes dendritic cell selection of natural regulatory T cells. J Exp Med 210:1069–1077PubMedCentralPubMedGoogle Scholar
  77. 77.
    Inoue J, Gohda J, Akiyama T (2007) Characteristics and biological functions of TRAF6. Adv Exp Med Biol 597:72–79PubMedGoogle Scholar
  78. 78.
    Akiyama T, Maeda S, Yamane S, Ogino K, Kasai M, Kajiura F, Matsumoto M, Inoue J (2005) Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Science 308:248–251PubMedGoogle Scholar
  79. 79.
    Chiffoleau E, Kobayashi T, Walsh MC, King CG, Walsh PT, Hancock WW, Choi Y, Turka LA (2003) TNF receptor-associated factor 6 deficiency during hemopoiesis induces Th2-polarized inflammatory disease. J Immunol 171:5751–5759PubMedGoogle Scholar
  80. 80.
    Shimo Y, Yanai H, Ohshima D, Qin J, Motegi H, Maruyama Y, Hori S, Inoue J, Akiyama T (2011) TRAF6 directs commitment to regulatory T cells in thymocytes. Genes Cells 16:437–447PubMedGoogle Scholar
  81. 81.
    Zhou X, Bailey-Bucktrout SL, Jeker LT, Penaranda C, Martinez-Llordella M, Ashby M, Nakayama M, Rosenthal W, Bluestone JA (2009) Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 10:1000–1007PubMedCentralPubMedGoogle Scholar
  82. 82.
    Duarte JH, Zelenay S, Bergman ML, Martins AC, Demengeot J (2009) Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions. Eur J Immunol 39:948–955PubMedGoogle Scholar
  83. 83.
    Yang XO, Nurieva R, Martinez GJ, Kang HS, Chung Y, Pappu BP, Shah B, Chang SH, Schluns KS, Watowich SS et al (2008) Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29:44–56PubMedCentralPubMedGoogle Scholar
  84. 84.
    Miyao T, Floess S, Setoguchi R, Luche H, Fehling HJ, Waldmann H, Huehn J, Hori S (2012) Plasticity of Foxp3(+) T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells. Immunity 36:262–275PubMedGoogle Scholar
  85. 85.
    Rubtsov YP, Niec RE, Josefowicz S, Li L, Darce J, Mathis D, Benoist C, Rudensky AY (2010) Stability of the regulatory T cell lineage in vivo. Science 329:1667–1671PubMedGoogle Scholar
  86. 86.
    Bailey-Bucktrout SL, Martinez-Llordella M, Zhou X, Anthony B, Rosenthal W, Luche H, Fehling HJ, Bluestone JA (2013) Self-antigen-driven activation induces instability of regulatory T cells during an inflammatory autoimmune response. Immunity 39:949–962PubMedGoogle Scholar
  87. 87.
    Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-Hora M, Kodama T, Tanaka S, Bluestone JA, Takayanagi H (2014) Pathogenic conversion of Foxp3(+) T cells into TH17 cells in autoimmune arthritis. Nat Med 20:62–68PubMedGoogle Scholar
  88. 88.
    Laurence A, Amarnath S, Mariotti J, Kim YC, Foley J, Eckhaus M, O’Shea JJ, Fowler DH (2012) STAT3 transcription factor promotes instability of nTreg cells and limits generation of iTreg cells during acute murine graft-versus-host disease. Immunity 37:209–222PubMedCentralPubMedGoogle Scholar
  89. 89.
    Duhen T, Duhen R, Lanzavecchia A, Sallusto F, Campbell DJ (2012) Functionally distinct subsets of human FOXP3+ Treg cells that phenotypically mirror effector Th cells. Blood 119:4430–4440PubMedCentralPubMedGoogle Scholar
  90. 90.
    Zhang P, Tey SK, Koyama M, Kuns RD, Olver SD, Lineburg KE, Lor M, Teal BE, Raffelt NC, Raju J et al (2013) Induced regulatory T cells promote tolerance when stabilized by rapamycin and IL-2 in vivo. J Immunol 191:5291–5303PubMedGoogle Scholar
  91. 91.
    Delgoffe GM, Woo SR, Turnis ME, Gravano DM, Guy C, Overacre AE, Bettini ML, Vogel P, Finkelstein D, Bonnevier J et al (2013) Stability and function of regulatory T cells is maintained by a neuropilin-1-semaphorin-4a axis. Nature 501:252–256PubMedGoogle Scholar
  92. 92.
    Chen Q, Kim YC, Laurence A, Punkosdy GA, Shevach EM (2011) IL-2 controls the stability of Foxp3 expression in TGF-beta-induced Foxp3+ T cells in vivo. J Immunol 186:6329–6337PubMedCentralPubMedGoogle Scholar
  93. 93.
    Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, Deroos P, Liu H, Cross JR, Pfeffer K, Coffer PJ et al (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. doi: 10.1038/nature12726 PubMedGoogle Scholar
  94. 94.
    Zhang R, Huynh A, Whitcher G, Chang J, Maltzman JS, Turka LA (2013) An obligate cell-intrinsic function for CD28 in Tregs. J Clin Invest 123:580–593PubMedCentralPubMedGoogle Scholar
  95. 95.
    Nie H, Zheng Y, Li R, Guo TB, He D, Fang L, Liu X, Xiao L, Chen X, Wan B et al (2013) Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-alpha in rheumatoid arthritis. Nat Med 19:322–328PubMedGoogle Scholar
  96. 96.
    van Loosdregt J, Fleskens V, Tiemessen MM, Mokry M, van Boxtel R, Meerding J, Pals CE, Kurek D, Baert MR, Delemarre EM et al (2013) Canonical Wnt signaling negatively modulates regulatory T cell function. Immunity 39:298–310PubMedGoogle Scholar
  97. 97.
    van der Touw W, Cravedi P, Kwan WH, Paz-Artal E, Merad M, Heeger PS (2013) Cutting edge: receptors for C3a and C5a modulate stability of alloantigen-reactive induced regulatory T cells. J Immunol 190:5921–5925PubMedGoogle Scholar
  98. 98.
    Valencia X, Stephens G, Goldbach-Mansky R, Wilson M, Shevach EM, Lipsky PE (2006) TNF downmodulates the function of human CD4 + CD25hi T-regulatory cells. Blood 108:253–261PubMedCentralPubMedGoogle Scholar
  99. 99.
    Strainic MG, Shevach EM, An F, Lin F, Medof ME (2013) Absence of signaling into CD4(+) cells via C3aR and C5aR enables autoinductive TGF-beta1 signaling and induction of Foxp3(+) regulatory T cells. Nat Immunol 14:162–171PubMedGoogle Scholar
  100. 100.
    Schaer DA (2013) GITR pathway activation abrogates tumor immune suppression through loss of regulatory T-cell lineage stability. Cancer Immunol Res 1:320–331Google Scholar
  101. 101.
    Liu G, Burns S, Huang G, Boyd K, Proia RL, Flavell RA, Chi H (2009) The receptor S1P1 overrides regulatory T cell-mediated immune suppression through Akt-mTOR. Nat Immunol 10:769–777PubMedCentralPubMedGoogle Scholar
  102. 102.
    Kwan WH, van der Touw W, Paz-Artal E, Li MO, Heeger PS (2013) Signaling through C5a receptor and C3a receptor diminishes function of murine natural regulatory T cells. J Exp Med 210:257–268PubMedCentralPubMedGoogle Scholar
  103. 103.
    van Loosdregt J, Vercoulen Y, Guichelaar T, Gent YY, Beekman JM, van Beekum O, Brenkman AB, Hijnen DJ, Mutis T, Kalkhoven E et al (2010) Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood 115:965–974PubMedGoogle Scholar
  104. 104.
    Samanta A, Li B, Song X, Bembas K, Zhang G, Katsumata M, Saouaf SJ, Wang Q, Hancock WW, Shen Y et al (2008) TGF-beta and IL-6 signals modulate chromatin binding and promoter occupancy by acetylated FOXP3. Proc Natl Acad Sci U S A 105:14023–14027PubMedCentralPubMedGoogle Scholar
  105. 105.
    Jin HS, Park Y, Elly C, Liu YC (2013) Itch expression by Treg cells controls Th2 inflammatory responses. J Clin Invest 123:4923–4934PubMedCentralPubMedGoogle Scholar
  106. 106.
    Fukushima T, Matsuzawa S, Kress CL, Bruey JM, Krajewska M, Lefebvre S, Zapata JM, Ronai Z, Reed JC (2007) Ubiquitin-conjugating enzyme Ubc13 is a critical component of TNF receptor-associated factor (TRAF)-mediated inflammatory responses. Proc Natl Acad Sci U S A 104:6371–6376PubMedCentralPubMedGoogle Scholar
  107. 107.
    Chang JH, Xiao Y, Hu H, Jin J, Yu J, Zhou X, Wu X, Johnson HM, Akira S, Pasparakis M et al (2012) Ubc13 maintains the suppressive function of regulatory T cells and prevents their conversion into effector-like T cells. Nat Immunol 13:481–490PubMedCentralPubMedGoogle Scholar
  108. 108.
    Takahashi R, Nishimoto S, Muto G, Sekiya T, Tamiya T, Kimura A, Morita R, Asakawa M, Chinen T, Yoshimura A (2011) SOCS1 is essential for regulatory T cell functions by preventing loss of Foxp3 expression as well as IFN-{gamma} and IL-17A production. J Exp Med 208:2055–2067PubMedCentralPubMedGoogle Scholar
  109. 109.
    Kriegel MA, Rathinam C, Flavell RA (2009) E3 ubiquitin ligase GRAIL controls primary T cell activation and oral tolerance. Proc Natl Acad Sci U S A 106:16770–16775PubMedCentralPubMedGoogle Scholar
  110. 110.
    Nurieva RI, Zheng S, Jin W, Chung Y, Zhang Y, Martinez GJ, Reynolds JM, Wang SL, Lin X, Sun SC et al (2010) The E3 ubiquitin ligase GRAIL regulates T cell tolerance and regulatory T cell function by mediating T cell receptor-CD3 degradation. Immunity 32:670–680PubMedCentralPubMedGoogle Scholar
  111. 111.
    MacKenzie DA, Schartner J, Lin J, Timmel A, Jennens-Clough M, Fathman CG, Seroogy CM (2007) GRAIL is up-regulated in CD4+ CD25+ T regulatory cells and is sufficient for conversion of T cells to a regulatory phenotype. J Biol Chem 282:9696–9702PubMedGoogle Scholar
  112. 112.
    Chattopadhyay G, Shevach EM (2013) Antigen-specific induced T regulatory cells impair dendritic cell function via an IL-10/MARCH1-dependent mechanism. J Immunol 191:5875–5884PubMedGoogle Scholar
  113. 113.
    Muto G, Kotani H, Kondo T, Morita R, Tsuruta S, Kobayashi T, Luche H, Fehling HJ, Walsh M, Choi Y et al (2013) TRAF6 is essential for maintenance of regulatory T cells that suppress Th2 type autoimmunity. PLoS One 8:e74639PubMedCentralPubMedGoogle Scholar
  114. 114.
    Cejas PJ, Walsh MC, Pearce EL, Han D, Harms GM, Artis D, Turka LA, Choi Y (2010) TRAF6 inhibits Th17 differentiation and TGF-beta-mediated suppression of IL-2. Blood 115:4750–4757PubMedCentralPubMedGoogle Scholar
  115. 115.
    van Loosdregt J, Fleskens V, Fu J, Brenkman AB, Bekker CP, Pals CE, Meerding J, Berkers CR, Barbi J, Grone A et al (2013) Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity 39:259–271PubMedGoogle Scholar
  116. 116.
    Chen Z, Barbi J, Bu S, Yang HY, Li Z, Gao Y, Jinasena D, Fu J, Lin F, Chen C et al (2013) The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity 39:272–285PubMedGoogle Scholar
  117. 117.
    Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ, Yin LY, Patterson C (1999) Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 19:4535–4545PubMedCentralPubMedGoogle Scholar
  118. 118.
    Li X, Huang M, Zheng H, Wang Y, Ren F, Shang Y, Zhai Y, Irwin DM, Shi Y, Chen D et al (2008) CHIP promotes Runx2 degradation and negatively regulates osteoblast differentiation. J Cell Biol 181:959–972PubMedCentralPubMedGoogle Scholar
  119. 119.
    Wang S, Li Y, Hu YH, Song R, Gao Y, Liu HY, Shu HB, Liu Y (2013) STUB1 is essential for T-cell activation by ubiquitinating CARMA1. Eur J Immunol 43:1034–1041PubMedGoogle Scholar
  120. 120.
    Nyirenda MH, Sanvito L, Darlington PJ, O’Brien K, Zhang GX, Constantinescu CS, Bar-Or A, Gran B (2011) TLR2 stimulation drives human naive and effector regulatory T cells into a Th17-like phenotype with reduced suppressive function. J Immunol 187:2278–2290PubMedGoogle Scholar
  121. 121.
    Sutmuller RP, den Brok MH, Kramer M, Bennink EJ, Toonen LW, Kullberg BJ, Joosten LA, Akira S, Netea MG, Adema GJ (2006) Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest 116:485–494PubMedCentralPubMedGoogle Scholar
  122. 122.
    Liu H, Komai-Koma M, Xu D, Liew FY (2006) Toll-like receptor 2 signaling modulates the functions of CD4+ CD25+ regulatory T cells. Proc Natl Acad Sci U S A 103:7048–7053PubMedCentralPubMedGoogle Scholar
  123. 123.
    Yang Y, Huang CT, Huang X, Pardoll DM (2004) Persistent Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance. Nat Immunol 5:508–515PubMedGoogle Scholar
  124. 124.
    Peng G, Guo Z, Kiniwa Y, Voo KS, Peng W, Fu T, Wang DY, Li Y, Wang HY, Wang RF (2005) Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function. Science 309:1380–1384PubMedGoogle Scholar
  125. 125.
    Pasare C, Medzhitov R (2003) Toll pathway-dependent blockade of CD4 + CD25+ T cell-mediated suppression by dendritic cells. Science 299:1033–1036PubMedGoogle Scholar
  126. 126.
    Chen L, Wang T, Zhou P, Ma L, Yin D, Shen J, Molinero L, Nozaki T, Phillips T, Uematsu S et al (2006) TLR engagement prevents transplantation tolerance. Am J Transplant 6:2282–2291PubMedGoogle Scholar
  127. 127.
    LaRosa DF, Gelman AE, Rahman AH, Zhang J, Turka LA, Walsh PT (2007) CpG DNA inhibits CD4 + CD25+ Treg suppression through direct MyD88-dependent costimulation of effector CD4+ T cells. Immunol Lett 108:183–188PubMedCentralPubMedGoogle Scholar
  128. 128.
    Zhang N, Kruger B, Lal G, Luan Y, Yadav A, Zang W, Grimm M, Waaga-Gasser AM, Murphy B, Bromberg JS et al (2010) Inhibition of TLR4 signaling prolongs Treg-dependent murine islet allograft survival. Immunol Lett 127:119–125PubMedCentralPubMedGoogle Scholar
  129. 129.
    Wu H, Noordmans GA, O’Brien MR, Ma J, Zhao CY, Zhang GY, Kwan TK, Alexander SI, Chadban SJ (2012) Absence of MyD88 signaling induces donor-specific kidney allograft tolerance. J Am Soc Nephrol 23:1701–1716PubMedCentralPubMedGoogle Scholar
  130. 130.
    Gaddis DE, Michalek SM, Katz J (2011) TLR4 signaling via MyD88 and TRIF differentially shape the CD4+ T cell response to Porphyromonas gingivalis hemagglutinin B. J Immunol 186:5772–5783PubMedGoogle Scholar
  131. 131.
    Oberg HH, Ly TT, Ussat S, Meyer T, Kabelitz D, Wesch D (2010) Differential but direct abolishment of human regulatory T cell suppressive capacity by various TLR2 ligands. J Immunol 184:4733–4740PubMedGoogle Scholar
  132. 132.
    Yamazaki S, Okada K, Maruyama A, Matsumoto M, Yagita H, Seya T (2011) TLR2-dependent induction of IL-10 and Foxp3+ CD25+ CD4+ regulatory T cells prevents effective anti-tumor immunity induced by Pam2 lipopeptides in vivo. PLoS One 6:e18833PubMedCentralPubMedGoogle Scholar
  133. 133.
    Chen Q, Davidson TS, Huter EN, Shevach EM (2009) Engagement of TLR2 does not reverse the suppressor function of mouse regulatory T cells, but promotes their survival. J Immunol 183:4458–4466PubMedCentralPubMedGoogle Scholar
  134. 134.
    Filippi CM, Ehrhardt K, Estes EA, Larsson P, Oldham JE, von Herrath MG (2011) TLR2 signaling improves immunoregulation to prevent type 1 diabetes. Eur J Immunol 41:1399–1409PubMedCentralPubMedGoogle Scholar
  135. 135.
    Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123:773–786PubMedGoogle Scholar
  136. 136.
    Liu X, Li H, Zhong B, Blonska M, Gorjestani S, Yan M, Tian Q, Zhang DE, Lin X, Dong C (2013) USP18 inhibits NF-kappaB and NFAT activation during Th17 differentiation by deubiquitinating the TAK1-TAB1 complex. J Exp Med 210:1575–1590PubMedCentralPubMedGoogle Scholar
  137. 137.
    Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164PubMedGoogle Scholar
  138. 138.
    Laurence A, Tato CM, Davidson TS, Kanno Y, Chen Z, Yao Z, Blank RB, Meylan F, Siegel R, Hennighausen L et al (2007) Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26:371–381PubMedGoogle Scholar
  139. 139.
    Quintana FJ, Jin H, Burns EJ, Nadeau M, Yeste A, Kumar D, Rangachari M, Zhu C, Xiao S, Seavitt J et al (2012) Aiolos promotes TH17 differentiation by directly silencing Il2 expression. Nat Immunol 13:770–777PubMedCentralPubMedGoogle Scholar
  140. 140.
    Zhao Y, Thornton AM, Kinney MC, Ma CA, Spinner JJ, Fuss IJ, Shevach EM, Jain A (2011) The deubiquitinase CYLD targets Smad7 protein to regulate transforming growth factor beta (TGF-beta) signaling and the development of regulatory T cells. J Biol Chem 286:40520–40530PubMedCentralPubMedGoogle Scholar
  141. 141.
    Lim JH, Jono H, Komatsu K, Woo CH, Lee J, Miyata M, Matsuno T, Xu X, Huang Y, Zhang W et al (2012) CYLD negatively regulates transforming growth factor-beta-signalling via deubiquitinating Akt. Nat Commun 3:771PubMedCentralPubMedGoogle Scholar
  142. 142.
    Reissig S, Hovelmeyer N, Weigmann B, Nikolaev A, Kalt B, Wunderlich TF, Hahn M, Neurath MF, Waisman A (2012) The tumor suppressor CYLD controls the function of murine regulatory T cells. J Immunol 189:4770–4776PubMedGoogle Scholar
  143. 143.
    Josefowicz SZ, Lu LF, Rudensky AY (2012) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30:531–564PubMedGoogle Scholar
  144. 144.
    Thuille N, Wachowicz K, Hermann-Kleiter N, Kaminski S, Fresser F, Lutz-Nicoladoni C, Leitges M, Thome M, Massoumi R, Baier G (2013) PKCtheta/beta and CYLD are antagonistic partners in the NFkappaB and NFAT transactivation pathways in primary mouse CD3+ T lymphocytes. PLoS One 8:e53709PubMedCentralPubMedGoogle Scholar
  145. 145.
    Wohlfert EA, Grainger JR, Bouladoux N, Konkel JE, Oldenhove G, Ribeiro CH, Hall JA, Yagi R, Naik S, Bhairavabhotla R et al (2011) GATA3 controls Foxp3(+) regulatory T cell fate during inflammation in mice. J Clin Invest 121:4503–4515PubMedCentralPubMedGoogle Scholar
  146. 146.
    Wang Y, Su MA, Wan YY (2011) An essential role of the transcription factor GATA-3 for the function of regulatory T cells. Immunity 35:337–348PubMedCentralPubMedGoogle Scholar
  147. 147.
    Zhang J, Chen C, Hou X, Gao Y, Lin F, Yang J, Gao Z, Pan L, Tao L, Wen C et al (2013) Identification of the E3 deubiquitinase ubiquitin-specific peptidase 21 (USP21) as a positive regulator of the transcription factor GATA3. J Biol Chem 288:9373–9382PubMedCentralPubMedGoogle Scholar
  148. 148.
    van Loosdregt J, Brunen D, Fleskens V, Pals CE, Lam EW, Coffer PJ (2011) Rapid temporal control of Foxp3 protein degradation by sirtuin-1. PLoS One 6:e19047PubMedCentralPubMedGoogle Scholar
  149. 149.
    Morawski PA, Mehra P, Chen C, Bhatti T, Wells AD (2013) Foxp3 protein stability is regulated by cyclin-dependent kinase 2. J Biol Chem 288:24494–24502PubMedGoogle Scholar
  150. 150.
    Kwon HS, Lim HW, Wu J, Schnolzer M, Verdin E, Ott M (2012) Three novel acetylation sites in the Foxp3 transcription factor regulate the suppressive activity of regulatory T cells. J Immunol 188:2712–2721PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Immunology and Hematopoiesis Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations