Advertisement

Journal of Molecular Medicine

, Volume 92, Issue 6, pp 665–676 | Cite as

Defective autophagy impairs ATF3 activity and worsens lung injury during endotoxemia

  • Alina Aguirre
  • Inés López-Alonso
  • Adrián González-López
  • Laura Amado-Rodríguez
  • Estefanía Batalla-Solís
  • Aurora Astudillo
  • Jorge Blázquez-Prieto
  • Alvaro F. Fernández
  • José A. Galván
  • Claudia C. dos Santos
  • Guillermo M. Albaiceta
Original Article

Abstract

Autophagy has emerged as a key regulator of the inflammatory response. To examine the role of autophagy in the development of organ dysfunction during endotoxemia, wild-type and autophagy-deficient (Atg4b-null) mice were challenged with lipopolysaccharide. Animals lacking Atg4b showed increased mortality after endotoxemia. Among the different organs studied, only the lungs showed significant differences between genotypes, with increased damage in mutant animals. Autophagy was activated in lungs from wild-type, LPS-treated mice. Similarly, human bronchial cells show an increased autophagy when exposed to serum from septic patients. We found an increased inflammatory response (increased neutrophilic infiltration, higher levels of Il6, Il12p40, and Cxcl2) in the lungs from knockout mice and identified perinuclear sequestration of the anti-inflammatory transcription factor ATF3 as the putative mechanism responsible for the differences between genotypes. Finally, induction of autophagy by starvation before LPS exposure resulted in a dampened pulmonary response to LPS in wild-type, but not knockout, mice. Similar results were found in human bronchial cells exposed to LPS. Our results demonstrate the central role of autophagy in the regulation of the lung response to endotoxemia and sepsis and its potential modulation by nutrition.

Key messages

  • Endotoxemia and sepsis trigger autophagy in lung tissue.

  • Defective autophagy increases mortality and lung inflammation after endotoxemia.

  • Impairment of autophagy results is perinuclear ATF3 sequestration.

  • Starvation ameliorates lung injury by an autophagy-dependent mechanism.

Keywords

Autophagy Lung injury Endotoxemia Sepsis Inflammatory response ATF3 sequestration 

Notes

Acknowledgments

The authors thank Carlos López-Otin for his support during the development of the study and Ana Gutierrez-Fernandez for her help with the immunofluorescence studies. They also thank Marta S. Pitiot, Carmen Muñiz and Vanessa García for their help with histological studies. This work was supported by grants from Instituto de Salud Carlos III (FIS-PI 10/606, FEDER funds, INT 12/007 to GMA), Universidad de Oviedo (UNOV 09-pf to AGL), Fundación Universidad de Oviedo (to AA), Asociación Española contra el Cancer (AECC predoctoral grant to ILA), and Fundación para el fomento en Asturias de la investigación científica aplicada y la tecnología (FICYT-COF 11–40 to EBS). Instituto Universitario de Oncología del Principado de Asturias (IUOPA) is supported by Obra Social-Cajastur.

Disclosure

The authors declare no conflict of interest related to this study.

References

  1. 1.
    Gustot T (2011) Multiple organ failure in sepsis: prognosis and role of systemic inflammatory response. Curr Opin Crit Care 17:153–159PubMedCrossRefGoogle Scholar
  2. 2.
    Schwartz MD, Moore EE, Moore FA, Shenkar R, Moine P, Haenel JB, Abraham E (1996) Nuclear factor-kappa B is activated in alveolar macrophages from patients with acute respiratory distress syndrome. Crit Care Med 24:1285–1292PubMedCrossRefGoogle Scholar
  3. 3.
    Gonzalez-Lopez A, Aguirre A, Lopez-Alonso I, Amado L, Astudillo A, Fernandez-Garcia MS, Suarez MF, Batalla-Solis E, Colado E, Albaiceta GM (2012) MMP-8 deficiency increases TLR/RAGE ligands S100A8 and S100A9 and exacerbates lung inflammation during endotoxemia. PLoS ONE 7:e39940PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Gilchrist M, Thorsson V, Li B, Rust AG, Korb M, Roach JC, Kennedy K, Hai T, Bolouri H, Aderem A (2006) Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441:173–178PubMedCrossRefGoogle Scholar
  5. 5.
    Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12:814–822PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Marino G, Lopez-Otin C (2004) Autophagy: molecular mechanisms, physiological functions and relevance in human pathology. Cell Mol Life Sci 61:1439–1454PubMedCrossRefGoogle Scholar
  7. 7.
    Haspel JA, Choi AM (2011) Autophagy: a core cellular process with emerging links to pulmonary disease. Am J Respir Crit Care Med 184:1237–1246PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Lopez-Alonso I, Aguirre A, Gonzalez-Lopez A, Fernandez AF, Amado-Rodriguez L, Astudillo A, Batalla-Solis E, Albaiceta GM (2013) Impairment of autophagy decreases ventilator-induced lung injury by blockade of the NF-kappaB pathway. Am J Physiol Lung Cell Mol Physiol 304:L844–L852PubMedCrossRefGoogle Scholar
  9. 9.
    Singer M (2008) Cellular dysfunction in sepsis. Clin Chest Med 29:655–660, viii-ixPubMedCrossRefGoogle Scholar
  10. 10.
    Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Marino G, Fernandez AF, Cabrera S, Lundberg YW, Cabanillas R, Rodriguez F, Salvador-Montoliu N, Vega JA, Germana A, Fueyo A et al (2010) Autophagy is essential for mouse sense of balance. J Clin Invest 120:2331–2344PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Cabrera S, Fernandez AF, Marino G, Aguirre A, Suarez MF, Espanol Y, Vega JA, Laura R, Fueyo A, Fernandez-Garcia MS et al (2013) ATG4B/autophagin-1 regulates intestinal homeostasis and protects mice from experimental colitis. Autophagy 9:1188–1200PubMedCrossRefGoogle Scholar
  13. 13.
    Gonzalez-Lopez A, Astudillo A, Garcia-Prieto E, Fernandez-Garcia MS, Lopez-Vazquez A, Batalla-Solis E, Taboada F, Fueyo A, Albaiceta GM (2011) Inflammation and matrix remodeling during repair of ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 301:L500–L509PubMedCrossRefGoogle Scholar
  14. 14.
    Albaiceta GM, Gutierrez-Fernandez A, Parra D, Astudillo A, Garcia-Prieto E, Taboada F, Fueyo A (2008) Lack of matrix metalloproteinase-9 worsens ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 294:L535–L543PubMedCrossRefGoogle Scholar
  15. 15.
    Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, Kuebler WM (2011) An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol 44:725–738PubMedCrossRefGoogle Scholar
  16. 16.
    Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8:445–544PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Hussain SN, Mofarrahi M, Sigala I, Kim HC, Vassilakopoulos T, Maltais F, Bellenis I, Chaturvedi R, Gottfried SB, Metrakos P et al (2010) Mechanical ventilation-induced diaphragm disuse in humans triggers autophagy. Am J Respir Crit Care Med 182:1377–1386PubMedCrossRefGoogle Scholar
  18. 18.
    Sanz L, Diaz-Meco MT, Nakano H, Moscat J (2000) The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathway. EMBO J 19:1576–1586PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Criollo A, Chereau F, Malik SA, Niso-Santano M, Marino G, Galluzzi L, Maiuri MC, Baud V, Kroemer G (2012) Autophagy is required for the activation of NFkappaB. Cell Cycle 11:194–199PubMedCrossRefGoogle Scholar
  20. 20.
    Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim HP et al (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12:222–230PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S et al (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131:1149–1163PubMedCrossRefGoogle Scholar
  22. 22.
    Knaevelsrud H, Simonsen A (2010) Fighting disease by selective autophagy of aggregate-prone proteins. FEBS Lett 584:2635–2645PubMedCrossRefGoogle Scholar
  23. 23.
    Maiuri L, Luciani A, Giardino I, Raia V, Villella VR, D’Apolito M, Pettoello-Mantovani M, Guido S, Ciacci C, Cimmino M et al (2008) Tissue transglutaminase activation modulates inflammation in cystic fibrosis via PPARgamma down-regulation. J Immunol 180:7697–7705PubMedCrossRefGoogle Scholar
  24. 24.
    Moscat J, Diaz-Meco MT (2009) To aggregate or not to aggregate? A new role for p62. EMBO Rep 10:804PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Akram A, Han B, Masoom H, Peng C, Lam E, Litvack ML, Bai X, Shan Y, Hai T, Batt J et al (2010) Activating transcription factor 3 confers protection against ventilator-induced lung injury. Am J Respir Crit Care Med 182:489–500PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Gilchrist M, Henderson WR Jr, Clark AE, Simmons RM, Ye X, Smith KD, Aderem A (2008) Activating transcription factor 3 is a negative regulator of allergic pulmonary inflammation. J Exp Med 205:2349–2357PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Tattoli I, Sorbara MT, Vuckovic D, Ling A, Soares F, Carneiro LA, Yang C, Emili A, Philpott DJ, Girardin SE (2012) Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program. Cell Host Microbe 11:563–575PubMedCrossRefGoogle Scholar
  28. 28.
    Whitmore MM, Iparraguirre A, Kubelka L, Weninger W, Hai T, Williams BR (2007) Negative regulation of TLR-signaling pathways by activating transcription factor-3. J Immunol 179:3622–3630PubMedCrossRefGoogle Scholar
  29. 29.
    Yan C, Boyd DD (2006) ATF3 regulates the stability of p53: a link to cancer. Cell Cycle 5:926–929PubMedCrossRefGoogle Scholar
  30. 30.
    Krakauer T, Buckley M, Issaq HJ, Fox SD (2010) Rapamycin protects mice from staphylococcal enterotoxin B-induced toxic shock and blocks cytokine release in vitro and in vivo. Antimicrob Agents Chemother 54:1125–1131PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Tsuchiya T, Higami Y, Komatsu T, Tanaka K, Honda S, Yamaza H, Chiba T, Ayabe H, Shimokawa I (2005) Acute stress response in calorie-restricted rats to lipopolysaccharide-induced inflammation. Mech Ageing Dev 126:568–579PubMedCrossRefGoogle Scholar
  32. 32.
    Oarada M, Miki T, Kohno S, Sakai K, Nikawa T, Yoneyama M, Gonoi T (2013) Refeeding with a standard diet after a 48-h fast elicits an inflammatory response in the mouse liver. J Nutr Biochem 24:1314–1323PubMedCrossRefGoogle Scholar
  33. 33.
    Vanhorebeek I, Gunst J, Derde S, Derese I, Boussemaere M, Guiza F, Martinet W, Timmermans JP, D’Hoore A, Wouters PJ et al (2011) Insufficient activation of autophagy allows cellular damage to accumulate in critically ill patients. J Clin Endocrinol Metab 96:E633–E645PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alina Aguirre
    • 1
    • 2
  • Inés López-Alonso
    • 1
  • Adrián González-López
    • 1
  • Laura Amado-Rodríguez
    • 3
  • Estefanía Batalla-Solís
    • 3
  • Aurora Astudillo
    • 4
    • 5
  • Jorge Blázquez-Prieto
    • 1
  • Alvaro F. Fernández
    • 2
  • José A. Galván
    • 5
  • Claudia C. dos Santos
    • 6
  • Guillermo M. Albaiceta
    • 1
    • 3
    • 7
  1. 1.Departamento de Biología Funcional, Área de FisiologíaIUOPA, Universidad de OviedoOviedoSpain
  2. 2.Departamento de Bioquímica y Biología MolecularIUOPA, Universidad de OviedoOviedoSpain
  3. 3.Servicio de Medicina IntensivaHospital Universitario Central de AsturiasOviedoSpain
  4. 4.Departamento de Cirugía y Especialidades MedicoquirúrgicasIUOPA, Universidad de OviedoOviedoSpain
  5. 5.Servicio de Anatomía PatológicaHospital Universitario Central de AsturiasOviedoSpain
  6. 6.Interdepartmental Division of Critical CareThe Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael’s HospitalTorontoCanada
  7. 7.CIBER-Enfermedades RespiratoriasInstituto de Salud Carlos IIIMadridSpain

Personalised recommendations