Advertisement

Journal of Molecular Medicine

, Volume 92, Issue 5, pp 509–521 | Cite as

A novel gene regulator, pyrrole–imidazole polyamide targeting ABCA1 gene increases cholesterol efflux from macrophages and plasma HDL concentration

  • Akiko Tsunemi
  • Takahiro Ueno
  • Noboru Fukuda
  • Takayoshi Watanabe
  • Kazunobu Tahira
  • Akira Haketa
  • Yoshinari Hatanaka
  • Sho Tanaka
  • Taro Matsumoto
  • Yoshiaki Matsumoto
  • Hiroki Nagase
  • Masayoshi Soma
Original Article

Abstract

Pyrrole–imidazole (PI) polyamides are nuclease-resistant novel compounds that inhibit transcription factors by binding to the minor groove of DNA. A PI polyamide that targets mouse ABCA1 and increases ABCA1 gene expression was designed and evaluated as an agent to increase plasma HDL concentration. A PI polyamide was designed to bind the activator protein-2 binding site of the mouse ABCA1 promoter. The effect of this PI polyamide on ABCA1 expression was evaluated by real-time RT-PCR and Western blotting using RAW264 cells. In vivo effects of this polyamide on ABCA1 gene expression and plasma HDL level were examined in C57B6 mice. One milligram per kilogram of body weight of PI polyamide was injected via the tail veins every 2 days for 1 week, and plasma lipid profiles were evaluated. PI polyamide showed a specific binding to the target DNA in gel mobility shift assay. Treatment of RAW264 cells with 1.0 μM PI polyamide significantly increased ABCA1 mRNA expression. PI polyamide also significantly increased apolipoprotein AI-mediated HDL biogenesis in RAW264 cells. Cellular cholesterol efflux mediated by apolipoprotein AI was significantly increased by the PI polyamide treatment. PI polyamide significantly increased expression of ABCA1 mRNA in the liver of C57B6 mice. Plasma HDL concentration was increased by PI polyamide administration. All of the HDL sub-fractions showed a tendency to increase after PI polyamide administration. The designed PI polyamide that targeted ABCA1 successfully increased ABCA1 expression and HDL biogenesis. This novel gene-regulating agent is promising as a useful compound to increase plasma HDL concentration.

Key messages

  • A novel pyrrole–imidazole (PI) polyamide binds to ABCA1.

  • PI polyamide interfered with binding of AP-2ɑ protein to the ABCA1 gene promoter.

  • PI polyamide inhibited the AP-2ɑ-mediated reduction of ABCA1 gene and protein expression.

  • PI polyamide increased ABCA1 protein and apolipoprotein AI mediated HDL biogenesis.

  • PI polyamide is a new gene regulator for the prevention of atherosclerotic diseases.

Keywords

ABCA1 PI polyamide HDL AP-2 

Notes

Acknowledgment

This work was partially supported by a grant from the “Strategic Research Base Development” Program for Private Universities subsidized by MEXT (2011).

Conflict of interest

There is no conflict of interest to disclose for any of the authors.

References

  1. 1.
    Assmann G, Schulte H (1988) The Prospective Cardiovascular Munster (PROCAM) study: prevalence of hyperlipidemia in persons with hypertension and/or diabetes mellitus and the relationship to coronary heart disease. Am Heart J 116:1713–1724PubMedCrossRefGoogle Scholar
  2. 2.
    Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR (1977) High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med 62:707–714PubMedCrossRefGoogle Scholar
  3. 3.
    Sandhu S, Wiebe N, Fried LF et al (2001) Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 285:2486–2497CrossRefGoogle Scholar
  4. 4.
    Graham I, Atar D, Borch-Johnsen K, Boysen G, Burell G, Cifkova R, Dallongeville J, De Backer G, Ebrahim S, Gjelsvik B et al (2007) European guidelines on cardiovascular disease prevention in clinical practice: executive summary: Fourth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Eur Heart J 28:2375–2414PubMedCrossRefGoogle Scholar
  5. 5.
    Teramoto T, Sasaki J, Ueshima H, Egusa G, Kinoshita M, Shimamoto K, Daida H, Biro S, Hirobe K, Funahashi T et al (2007) Executive summary of Japan Atherosclerosis Society (JAS) guideline for diagnosis and prevention of atherosclerotic cardiovascular diseases for Japanese. J Atheroscler Thromb 14:45–50PubMedCrossRefGoogle Scholar
  6. 6.
    Rader DJ (2007) Mechanisms of disease: HDL metabolism as a target for novel therapies. Nat Clin Pract Cardiovasc Med 4:102–109PubMedCrossRefGoogle Scholar
  7. 7.
    Tall AR (2008) Cholesterol efflux pathways and other potential mechanisms involved in the athero-protective effect of high density lipoproteins. J Intern Med 263:256–273PubMedCrossRefGoogle Scholar
  8. 8.
    Yokoyama S (2005) Assembly of high density lipoprotein by the ABCA1/apolipoprotein pathway. Curr Opin Lipidol 16:269–279PubMedCrossRefGoogle Scholar
  9. 9.
    Joyce CW, Amar MJ, Lambert G, Vaisman BL, Paigen B, Najib-Fruchart J, Hoyt RF Jr, Neufeld ED, Remaley AT, Fredrickson DS et al (2002) The ATP binding cassette transporter A1 (ABCA1) modulates the development of aortic atherosclerosis in C57BL/6 and apoE-knockout mice. Proc Natl Acad Sci U S A 99:407–412PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Singaraja RR, Fievet C, Castro G, James ER, Hennuyer N, Clee SM, Bissada N, Choy JC, Fruchart JC, McManus BM et al (2002) Increased ABCA1 activity protects against atherosclerosis. J Clin Invest 110:35–42PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Costet P, Luo Y, Wang N, Tall AR (2000) Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J Biol Chem 275:28240–28245PubMedGoogle Scholar
  12. 12.
    Schwartz K, Lawn RM, Wade DP (2000) ABC1 gene expression and ApoA-I-mediated cholesterol efflux are regulated by LXR. Biochem Biophys Res Commun 274:794–802PubMedCrossRefGoogle Scholar
  13. 13.
    Venkateswaran A, Laffitte BA, Joseph SB, Mak PA, Wilpitz DC, Edwards PA, Tontonoz P (2000) Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha. Proc Natl Acad Sci U S A 97:12097–12102PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Chinetti G, Lestavel S, Bocher V, Remaley AT, Neve B, Torra IP, Teissier E, Minnich A, Jaye M, Duverger N et al (2001) PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 7:53–58PubMedCrossRefGoogle Scholar
  15. 15.
    Ogata M, Tsujita M, Hossain MA, Akita N, Gonzalez FJ, Staels B, Suzuki S, Fukutomi T, Kimura G, Yokoyama S (2009) On the mechanism for PPAR agonists to enhance ABCA1 gene expression. Atherosclerosis 205:413–419PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Iwamoto N, Abe-Dohmae S, Ayaori M, Tanaka N, Kusuhara M, Ohsuzu F, Yokoyama S (2007) ATP-binding cassette transporter A1 gene transcription is downregulated by activator protein 2alpha. Doxazosin inhibits activator protein 2alpha and increases high-density lipoprotein biogenesis independent of alpha1-adrenoceptor blockade. Circ Res 101:156–165PubMedCrossRefGoogle Scholar
  17. 17.
    Iwamoto N, Abe-Dohmae S, Lu R, Yokoyama S (2008) Involvement of protein kinase D in phosphorylation and increase of DNA binding of activator protein 2 alpha to downregulate ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol 28:2282–2287PubMedCrossRefGoogle Scholar
  18. 18.
    Bremer RE, Szewczyk JW, Baird EE, Dervan PB (2000) Recognition of the DNA minor groove by pyrrole–imidazole polyamides: comparison of desmethyl- and N-methylpyrrole. Bioorg Med Chem 8:1947–1955PubMedCrossRefGoogle Scholar
  19. 19.
    Dervan PB, Edelson BS (2003) Recognition of the DNA minor groove by pyrrole–imidazole polyamides. Curr Opin Struct Biol 13:284–299PubMedCrossRefGoogle Scholar
  20. 20.
    White S, Baird EE, Dervan PB (1997) On the pairing rules for recognition in the minor groove of DNA by pyrrole–imidazole polyamides. Chem Biol 4:569–578PubMedCrossRefGoogle Scholar
  21. 21.
    Chiang SY, Burli RW, Benz CC, Gawron L, Scott GK, Dervan PB, Beerman TA (2000) Targeting the ets binding site of the HER2/neu promoter with pyrrole–imidazole polyamides. J Biol Chem 275:24246–24254PubMedCrossRefGoogle Scholar
  22. 22.
    Gottesfeld JM, Belitsky JM, Melander C, Dervan PB, Luger K (2002) Blocking transcription through a nucleosome with synthetic DNA ligands. J Mol Biol 321:249–263PubMedCrossRefGoogle Scholar
  23. 23.
    Nguyen-Hackley DH, Ramm E, Taylor CM, Joung JK, Dervan PB, Pabo CO (2004) Allosteric inhibition of zinc-finger binding in the major groove of DNA by minor-groove binding ligands. Biochemistry 43:3880–3890PubMedCrossRefGoogle Scholar
  24. 24.
    Wurtz NR, Turner JM, Baird EE, Dervan PB (2001) Fmoc solid phase synthesis of polyamides containing pyrrole and imidazole amino acids. Org Lett 3:1201–1203PubMedCrossRefGoogle Scholar
  25. 25.
    Bando T, Sugiyama H (2006) Synthesis and biological properties of sequence-specific DNA-alkylating pyrrole–imidazole polyamides. Acc Chem Res 39:935–944PubMedCrossRefGoogle Scholar
  26. 26.
    Tahira Y, Fukuda N, Endo M, Suzuki R, Ikeda Y, Takagi H, Matsumoto K, Kanmatsuse K (2002) Transforming growth factor-beta expression in cardiovascular organs in stroke-prone spontaneously hypertensive rats with the development of hypertension. Hypertens Res 25:911–918PubMedCrossRefGoogle Scholar
  27. 27.
    Arakawa R, Yokoyama S (2002) Helical apolipoproteins stabilize ATP-binding cassette transporter A1 by protecting it from thiol protease-mediated degradation. J Biol Chem 277:22426–22429PubMedCrossRefGoogle Scholar
  28. 28.
    Yokoyama S, Tajima S, Yamamoto A (1982) The process of dissolving apolipoprotein A-I in an aqueous buffer. J Biochem 91:1267–1272PubMedGoogle Scholar
  29. 29.
    Abe-Dohmae S, Suzuki S, Wada Y, Aburatani H, Vance DE, Yokoyama S (2000) Characterization of apolipoprotein-mediated HDL generation induced by cAMP in a murine macrophage cell line. Biochemistry 39:11092–11099PubMedCrossRefGoogle Scholar
  30. 30.
    Usui S, Hara Y, Hosaki S, Okazaki M (2002) A new on-line dual enzymatic method for simultaneous quantification of cholesterol and triglycerides in lipoproteins by HPLC. J Lipid Res 43:805–814PubMedGoogle Scholar
  31. 31.
    Matsuda H, Fukuda N, Ueno T, Katakawa M, Wang X, Watanabe T, Matsui S, Aoyama T, Saito K, Bando T et al (2011) Transcriptional inhibition of progressive renal disease by gene silencing pyrrole–imidazole polyamide targeting of the transforming growth factor-beta1 promoter. Kidney Int 79:46–56PubMedCrossRefGoogle Scholar
  32. 32.
    Matsuda H, Fukuda N, Ueno T, Tahira Y, Ayame H, Zhang W, Bando T, Sugiyama H, Saito S, Matsumoto K et al (2006) Development of gene silencing pyrrole–imidazole polyamide targeting the TGF-beta1 promoter for treatment of progressive renal diseases. J Am Soc Nephrol 17:422–432PubMedCrossRefGoogle Scholar
  33. 33.
    Ueno T, Fukuda N, Tsunemi A, Yao EH, Matsuda H, Tahira K, Matsumoto T, Matsumoto K, Matsumoto Y, Nagase H et al (2009) A novel gene silencer, pyrrole–imidazole polyamide targeting human lectin-like oxidized low-density lipoprotein receptor-1 gene improves endothelial cell function. J Hypertens 27:508–516PubMedCrossRefGoogle Scholar
  34. 34.
    Santamarina-Fojo S, Peterson K, Knapper C, Qiu Y, Freeman L, Cheng JF, Osorio J, Remaley A, Yang XP, Haudenschild C et al (2000) Complete genomic sequence of the human ABCA1 gene: analysis of the human and mouse ATP-binding cassette A promoter. Proc Natl Acad Sci U S A 97:7987–7992PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Meyer P, Nigam A, Marcil M, Tardif JC (2009) The therapeutic potential of high-density lipoprotein mimetic agents in coronary artery disease. Curr Atheroscler Rep 11:329–333PubMedCrossRefGoogle Scholar
  36. 36.
    Davidson MH (2010) Update on CETP inhibition. J Clin Lipidol 4: 394–398. DOI: 10.1016/j.jacl.2010.08.003 Google Scholar
  37. 37.
    Bodzioch M, Orso E, Klucken J, Langmann T, Bottcher A, Diederich W, Drobnik W, Barlage S, Buchler C, Porsch-Ozcurumez M et al (1999) The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 22:347–351PubMedCrossRefGoogle Scholar
  38. 38.
    Nishimaki-Mogami T, Tamehiro N, Sato Y, Okuhira K, Sai K, Kagechika H, Shudo K, Abe-Dohmae S, Yokoyama S, Ohno Y et al (2008) The RXR agonists PA024 and HX630 have different abilities to activate LXR/RXR and to induce ABCA1 expression in macrophage cell lines. Biochem Pharmacol 76:1006–1013PubMedCrossRefGoogle Scholar
  39. 39.
    Zanotti I, Poti F, Pedrelli M, Favari E, Moleri E, Franceschini G, Calabresi L, Bernini F (2008) The LXR agonist T0901317 promotes the reverse cholesterol transport from macrophages by increasing plasma efflux potential. J Lipid Res 49:954–960PubMedCrossRefGoogle Scholar
  40. 40.
    Gottesfeld JM, Turner JM, Dervan PB (2000) Chemical approaches to control gene expression. Gene Expr 9:77–91PubMedGoogle Scholar
  41. 41.
    Oram JF, Lawn RM, Garvin MR, Wade DP (2000) ABCA1 is the cAMP-inducible apolipoprotein receptor that mediates cholesterol secretion from macrophages. J Biol Chem 275:34508–34511PubMedCrossRefGoogle Scholar
  42. 42.
    Wang N, Silver DL, Costet P, Tall AR (2000) Specific binding of ApoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABC1. J Biol Chem 275:33053–33058PubMedCrossRefGoogle Scholar
  43. 43.
    Chen W, Sun Y, Welch C, Gorelik A, Leventhal AR, Tabas I, Tall AR (2001) Preferential ATP-binding cassette transporter A1-mediated cholesterol efflux from late endosomes/lysosomes. J Biol Chem 276:43564–43569PubMedCrossRefGoogle Scholar
  44. 44.
    Neufeld EB, Remaley AT, Demosky SJ, Stonik JA, Cooney AM, Comly M, Dwyer NK, Zhang M, Blanchette-Mackie J, Santamarina-Fojo S et al (2001) Cellular localization and trafficking of the human ABCA1 transporter. J Biol Chem 276:27584–27590PubMedCrossRefGoogle Scholar
  45. 45.
    Takahashi Y, Smith JD (1999) Cholesterol efflux to apolipoprotein AI involves endocytosis and resecretion in a calcium-dependent pathway. Proc Natl Acad Sci U S A 96:11358–11363PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Basso F, Freeman L, Knapper CL, Remaley A, Stonik J, Neufeld EB, Tansey T, Amar MJ, Fruchart-Najib J, Duverger N et al (2003) Role of the hepatic ABCA1 transporter in modulating intrahepatic cholesterol and plasma HDL cholesterol concentrations. J Lipid Res 44:296–302PubMedCrossRefGoogle Scholar
  47. 47.
    Vaisman BL, Lambert G, Amar M, Joyce C, Ito T, Shamburek RD, Cain WJ, Fruchart-Najib J, Neufeld ED, Remaley AT et al (2001) ABCA1 overexpression leads to hyperalphalipoproteinemia and increased biliary cholesterol excretion in transgenic mice. J Clin Invest 108:303–309PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Wellington CL, Brunham LR, Zhou S, Singaraja RR, Visscher H, Gelfer A, Ross C, James E, Liu G, Huber MT et al (2003) Alterations of plasma lipids in mice via adenoviral-mediated hepatic overexpression of human ABCA1. J Lipid Res 44:1470–1480PubMedCrossRefGoogle Scholar
  49. 49.
    Timmins JM, Lee JY, Boudyguina E, Kluckman KD, Brunham LR, Mulya A, Gebre AK, Coutinho JM, Colvin PL, Smith TL et al (2005) Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I. J Clin Invest 115:1333–1342PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Akiko Tsunemi
    • 1
  • Takahiro Ueno
    • 1
    • 2
  • Noboru Fukuda
    • 1
  • Takayoshi Watanabe
    • 3
  • Kazunobu Tahira
    • 1
  • Akira Haketa
    • 1
  • Yoshinari Hatanaka
    • 1
  • Sho Tanaka
    • 1
  • Taro Matsumoto
    • 4
  • Yoshiaki Matsumoto
    • 5
  • Hiroki Nagase
    • 3
  • Masayoshi Soma
    • 1
    • 2
    • 6
  1. 1.Department of Medicine, Division of Nephrology, Hypertension and EndocrinologyNihon University School of MedicineItabashiJapan
  2. 2.Innovative Therapy Research Group, Nihon University Research Institute of Medical ScienceNihon University School of MedicineItabashiJapan
  3. 3.Chiba Cancer Center Research InstituteChuoJapan
  4. 4.Department of Functional Morphology, Division of Cell Regeneration and TransplantationNihon University School of MedicineItabasiJapan
  5. 5.Department of Clinical Pharmacokinetics, College of PharmacyNihon UniversityFunabashiJapan
  6. 6.Department of Medicine, Division of General MedicineNihon University School of MedicineItabashiJapan

Personalised recommendations