Journal of Molecular Medicine

, Volume 92, Issue 4, pp 373–386 | Cite as

Nilotinib-induced autophagic changes increase endogenous parkin level and ubiquitination, leading to amyloid clearance

  • Irina Lonskaya
  • Michaeline L. Hebron
  • Nicole M. Desforges
  • Joel B. Schachter
  • Charbel E-H Moussa
Original Article

Abstract

Alzheimer's disease (AD) is a neurodegenerative disorder associated with amyloid accumulation and autophagic changes. Parkin is an E3 ubiquitin ligase involved in proteasomal and autophagic clearance. We previously demonstrated decreased parkin solubility and interaction with the key autophagy enzyme beclin-1 in AD, but tyrosine kinase inhibition restored parkin–beclin-1 interaction. In the current studies, we determined the mechanisms of nilotinib-induced parkin–beclin-1 interaction, which leads to amyloid clearance. Nilotinib increased endogenous parkin levels and ubiquitination, which may enhance parkin recycling via the proteasome, leading to increased activity and interaction with beclin-1. Parkin solubility was decreased and autophagy was altered in amyloid expressing mice, suggesting that amyloid stress affects parkin stability, leading to failure of protein clearance via the lysosome. Isolation of autophagic vacuoles revealed amyloid and parkin accumulation in autophagic compartments but nilotinib decreased insoluble parkin levels and facilitated amyloid deposition into lysosomes in wild type, but not parkin−/− mice, further underscoring an essential role for endogenous parkin in amyloid clearance. These results suggest that nilotinib boosts the autophagic machinery, leading to increased level of endogenous parkin that undergoes ubiquitination and interacts with beclin-1 to facilitate amyloid clearance. These data suggest that nilotinib-mediated autophagic changes may trigger parkin response via increased protein levels, providing a therapeutic strategy to reduce Aβ and Tau in AD.

Key message

  • Parkin solubility (stability) is decreased in AD and APP transgenic mice.

  • Nilotinib-induced autophagic changes increase endogenous parkin level.

  • Increased parkin level leads to ubiquitination and proteasomal recycling.

  • Re-cycling decreases insoluble parkin and increases parkin–beclin-1 interaction.

  • Beclin-1–parkin interaction enhances amyloid clearance.

Keywords

Ubiquitination Parkin Autophagy Tau Amyloid Alzheimer's 

Notes

Acknowledgments

These studies were supported by NIH grant NIA 30378, Georgetown University funding and Merck & Co funds to Charbel E-H Moussa. The authors would like to thank Dr. Jim Driver from the University of Montana for his support in the EM studies.

Disclosure statements

The authors have read the manuscript and declare no conflict of interest whatsoever.

Dr. Charbel Moussa has a pending application to use nilotinib and bosutinib as a treatment for neurodegenerative diseases. The PCT application number PCT/US13/039283 was filed on May 2, 2013 and claims priority to two provisional patent applications filed on May 2, 2012 and March 1, 2013. The title is “treating neural diseases with tyrosine kinase inhibitors”.

References

  1. 1.
    Cook DG, Forman MS, Sung JC, Leight S, Kolson DL, Iwatsubo T, Lee VM, Doms RW (1997) Alzheimer's A beta(1–42) is generated in the endoplasmic reticulum/intermediate compartment of NT2N cells. Nat Med 3:1021–1023PubMedCrossRefGoogle Scholar
  2. 2.
    Greenfield JP, Tsai J, Gouras GK, Hai B, Thinakaran G, Checler F, Sisodia SS, Greengard P, Xu H (1999) Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer beta-amyloid peptides. Proc Natl Acad Sci U S A 96:742–747PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Skovronsky DM, Doms RW, Lee VM (1998) Detection of a novel intraneuronal pool of insoluble amyloid beta protein that accumulates with time in culture. J Cell Biol 141:1031–1039PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Xu H, Sweeney D, Wang R, Thinakaran G, Lo AC, Sisodia SS, Greengard P, Gandy S (1997) Generation of Alzheimer beta-amyloid protein in the trans-Golgi network in the apparent absence of vesicle formation. Proc Natl Acad Sci U S A 94:3748–3752PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Wang JY (2000) Regulation of cell death by the Abl tyrosine kinase. Oncogene 19:5643–5650PubMedCrossRefGoogle Scholar
  6. 6.
    Tremblay MA, Acker CM, Davies P (2010) Tau phosphorylated at tyrosine 394 is found in Alzheimer's disease tangles and can be a product of the Abl-related kinase, Arg. J Alzheimers Dis 19:721–733PubMedCentralPubMedGoogle Scholar
  7. 7.
    Schlatterer SD, Acker CM, Davies P (2011) c-Abl in neurodegenerative disease. J Mol Neurosci. doi: 10.1007/s12031-011-9588-1 PubMedCentralPubMedGoogle Scholar
  8. 8.
    Derkinderen P, Scales TM, Hanger DP, Leung KY, Byers HL, Ward MA, Lenz C, Price C, Bird IN, Perera T et al (2005) Tyrosine 394 is phosphorylated in Alzheimer's paired helical filament tau and in fetal tau with c-Abl as the candidate tyrosine kinase. J Neurosci 25:6584–6593PubMedCrossRefGoogle Scholar
  9. 9.
    Alvarez AR, Sandoval PC, Leal NR, Castro PU, Kosik KS (2004) Activation of the neuronal c-Abl tyrosine kinase by amyloid-beta-peptide and reactive oxygen species. Neurobiol Dis 17:326–336PubMedCrossRefGoogle Scholar
  10. 10.
    Cancino GI, Toledo EM, Leal NR, Hernandez DE, Yevenes LF, Inestrosa NC, Alvarez AR (2008) STI571 prevents apoptosis, tau phosphorylation and behavioural impairments induced by Alzheimer's beta-amyloid deposits. Brain 131:2425–2442PubMedCrossRefGoogle Scholar
  11. 11.
    Hebron ML, Lonskaya I, Moussa CE (2013) Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of alpha-synuclein in Parkinson's disease models. Hum Mol Genet 22:3315–3328PubMedCrossRefGoogle Scholar
  12. 12.
    Imam SZ, Zhou Q, Yamamoto A, Valente AJ, Ali SF, Bains M, Roberts JL, Kahle PJ, Clark RA, Li S (2011) Novel regulation of parkin function through c-Abl-mediated tyrosine phosphorylation: implications for Parkinson's disease. J Neurosci 31:157–163PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Lonskaya I, Shekoyan AR, Hebron ML, Desforges N, Algarzae NK, Moussa CE (2012) Diminished parkin solubility and co-localization with intraneuronal amyloid-beta are associated with autophagic defects in Alzheimer's disease. J Alzheimers Dis. doi: 10.3233/JAD-2012-121141 Google Scholar
  14. 14.
    Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12:119–131PubMedCrossRefGoogle Scholar
  15. 15.
    Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Park J, Kim Y, Chung J (2009) Mitochondrial dysfunction and Parkinson's disease genes: insights from Drosophila. Dis Model Mech 2:336–340PubMedCrossRefGoogle Scholar
  17. 17.
    Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, May J, Tocilescu MA, Liu W, Ko HS et al (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A 107:378–383PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Khandelwal PJ, Herman AM, Hoe HS, Rebeck GW, Moussa CE (2011) Parkin mediates beclin-dependent autophagic clearance of defective mitochondria and ubiquitinated Abeta in AD models. Hum Mol Genet 20:2091–2102PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Deremer DL, Ustun C, Natarajan K (2008) Nilotinib: a second-generation tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia. Clin Ther 30:1956–1975PubMedCrossRefGoogle Scholar
  20. 20.
    Skorski T (2011) BCR-ABL1 kinase: hunting an elusive target with new weapons. Chem Biol 18:1352–1353PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Mahon FX, Hayette S, Lagarde V, Belloc F, Turcq B, Nicolini F, Belanger C, Manley PW, Leroy C, Etienne G et al (2008) Evidence that resistance to nilotinib may be due to BCR-ABL, Pgp, or Src kinase overexpression. Cancer Res 68:9809–9816PubMedCrossRefGoogle Scholar
  22. 22.
    Lonskaya I, Hebron ML, Desforges NM, Franjie A, Moussa CE (2013) Tyrosine kinase inhibition increases functional parkin–Beclin-1 interaction and enhances amyloid clearance and cognitive performance. EMBO Mol Med. doi: 10.1002/emmm.201302771 PubMedCentralPubMedGoogle Scholar
  23. 23.
    Lonskaya I, Hebron ML, Algarzae NK, Desforges N, Moussa CE (2012) Decreased parkin solubility is associated with impairment of autophagy in the nigrostriatum of sporadic Parkinson's disease. Neuroscience. doi: 10.1016/j.neuroscience.2012.12.018 PubMedGoogle Scholar
  24. 24.
    Rebeck GW, Hoe HS, Moussa CE (2010) Beta-amyloid1-42 gene transfer model exhibits intraneuronal amyloid, gliosis, tau phosphorylation, and neuronal loss. J Biol Chem 285:7440–7446PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Burns MP, Zhang L, Rebeck GW, Querfurth HW, Moussa CE (2009) Parkin promotes intracellular Abeta1-42 clearance. Hum Mol Genet 18:3206–3216PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Hebron ML, Lonskaya I, Sharpe K, Weerasinghe PP, Algarzae NK, Shekoyan AR, Moussa CE (2013) Parkin ubiquitinates Tar-DNA binding protein-43 (TDP-43) and promotes its cytosolic accumulation via interaction with histone deacetylase 6 (HDAC6). J Biol Chem 288:4103–4115PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA, Bhatnagar A, Meloni EG, Wu N, Ackerson LC, Klapstein GJ et al (2003) Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 278:43628–43635PubMedCrossRefGoogle Scholar
  28. 28.
    Marzella L, Ahlberg J, Glaumann H (1982) Isolation of autophagic vacuoles from rat liver: morphological and biochemical characterization. J Cell Biol 93:144–154PubMedCrossRefGoogle Scholar
  29. 29.
    Davis J, Xu F, Deane R, Romanov G, Previti ML, Zeigler K, Zlokovic BV, Van Nostrand WE (2004) Early-onset and robust cerebral microvascular accumulation of amyloid beta-protein in transgenic mice expressing low levels of a vasculotropic Dutch/Iowa mutant form of amyloid beta-protein precursor. J Biol Chem 279:20296–20306PubMedCrossRefGoogle Scholar
  30. 30.
    Khandelwal PJ, Dumanis SB, Feng LR, Maguire-Zeiss K, Rebeck G, Lashuel HA, Moussa CE (2010) Parkinson-related parkin reduces alpha-Synuclein phosphorylation in a gene transfer model. Mol Neurodegener 5:47PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Rosen KM, Moussa CE, Lee HK, Kumar P, Kitada T, Qin G, Fu Q, Querfurth HW (2010) Parkin reverses intracellular beta-amyloid accumulation and its negative effects on proteasome function. J Neurosci Res 88:167–178PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Ko HS, Lee Y, Shin JH, Karuppagounder SS, Gadad BS, Koleske AJ, Pletnikova O, Troncoso JC, Dawson VL, Dawson TM (2010) Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin's ubiquitination and protective function. Proc Natl Acad Sci U S A 107:16691–16696PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Riley BE, Lougheed JC, Callaway K, Velasquez M, Brecht E, Nguyen L, Shaler T, Walker D, Yang Y, Regnstrom K et al (2013) Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat Commun 4:1982PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Lazarou M, Narendra DP, Jin SM, Tekle E, Banerjee S, Youle RJ (2013) PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding. J Cell Biol 200:163–172PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Wenzel DM, Lissounov A, Brzovic PS, Klevit RE (2011) UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 474:105–108PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Iguchi M, Kujuro Y, Okatsu K, Koyano F, Kosako H, Kimura M, Suzuki N, Uchiyama S, Tanaka K, Matsuda N (2013) Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation. J Biol Chem 288:22019–22032PubMedCrossRefGoogle Scholar
  37. 37.
    Spratt DE, Martinez-Torres RJ, Noh YJ, Mercier P, Manczyk N, Barber KR, Aguirre JD, Burchell L, Purkiss A, Walden H et al (2013) A molecular explanation for the recessive nature of parkin-linked Parkinson's disease. Nat Commun 4:1983PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Zheng X, Hunter T (2013) Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism. Cell Res 23:886–897PubMedCrossRefGoogle Scholar
  39. 39.
    Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F et al (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189:211–221PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Wauer T, Komander D (2013) Structure of the human Parkin ligase domain in an autoinhibited state. EMBO J 32(15):2099–2112PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Trempe JF, Sauve V, Grenier K, Seirafi M, Tang MY, Menade M, Al-Abdul-Wahid S, Krett J, Wong K, Kozlov G et al (2013) Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 340:1451–1455PubMedCrossRefGoogle Scholar
  42. 42.
    Rodriguez-Navarro JA, Gomez A, Rodal I, Perucho J, Martinez A, Furio V, Ampuero I, Casarejos MJ, Solano RM, de Yebenes JG et al (2008) Parkin deletion causes cerebral and systemic amyloidosis in human mutated tau over-expressing mice. Hum Mol Genet 17:3128–3143PubMedCrossRefGoogle Scholar
  43. 43.
    Perucho J, Casarejos MJ, Rubio I, Rodriguez-Navarro JA, Gomez A, Ampuero I, Rodal I, Solano RM, Carro E, Garcia de Yebenes J et al (2010) The effects of parkin suppression on the behaviour, amyloid processing, and cell survival in APP mutant transgenic mice. Exp Neurol 221:54–67PubMedCrossRefGoogle Scholar
  44. 44.
    Olzmann JA, Chin LS (2008) Parkin-mediated K63-linked polyubiquitination: a signal for targeting misfolded proteins to the aggresome–autophagy pathway. Autophagy 4:85–87PubMedCentralPubMedGoogle Scholar
  45. 45.
    Mizuno Y, Hattori N, Mori H, Suzuki T, Tanaka K (2001) Parkin and Parkinson's disease. Curr Opin Neurol 14:477–482PubMedCrossRefGoogle Scholar
  46. 46.
    Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B, Rockenstein E, Levine B et al (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 118:2190–2199PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Irina Lonskaya
    • 1
  • Michaeline L. Hebron
    • 1
  • Nicole M. Desforges
    • 1
  • Joel B. Schachter
    • 2
  • Charbel E-H Moussa
    • 1
  1. 1.Department of Neuroscience, Laboratory for Dementia and ParkinsonismGeorgetown University Medical CenterWashingtonUSA
  2. 2.Department of NeuroscienceMerck Research LaboratoriesWest PointUSA

Personalised recommendations