Journal of Molecular Medicine

, Volume 92, Issue 4, pp 387–397 | Cite as

Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model

  • Suyan Bian
  • Liping ZhangEmail author
  • Liufa Duan
  • Xi Wang
  • Ying Min
  • Hepeng Yu
Original Article


Mesenchymal stem cells (MSCs) have been increasingly tested experimentally and clinically for cardiac repair. However, the underlying mechanisms remain controversial due to the poor viability and considerable death of the engrafted cells in the infracted myocardium. Recent reports have suggested that extracellular vesicles (EVs) released by MSCs have angiogenesis-promoting activity; however, the therapeutic effect of MSC-EVs on an ischemic heart is unclear. In the present study, we reported that MSCs could release a large quantity of EVs around 100 nm in diameter upon hypoxia stimulation though the majority of the cells had not experienced apoptosis. MSC-EVs could be promptly uptaken by human umbilical vein endothelial cells, and the internalization resulted in dose-dependent enhancement of in vitro proliferation, migration, and tube formation of endothelial cells. Using an acute myocardial infarction rat model, we found that intramyocardial injection of MSC-EVs markedly enhanced blood flow recovery, in accordance with reduced infarct size and preserved cardiac systolic and diastolic performance compared to those treated with PBS. These data suggest that like MSCs, MSC-EVs could also protect cardiac tissue from ischemic injury at least by means of promoting blood vessel formation, though further detailed investigations should be performed to define the functionality of MSC-EVs.

Key messages

  • MSCs released extracellular vesicles (EVs) upon hypoxia stimulation.

  • MSC-EVs were a mixture of microvesicles and exosomes.

  • MSC-EVs could be promptly uptaken by human umbilical vein endothelial cells.

  • MSC-EVs promoted neoangiogenesis in vitro and in vivo.

  • MSC-EVs preserved cardiac performance in an AMI model.


Human bone marrow mesenchymal stem cells Human umbilical vein endothelial cells Extracellular vesicles Angiogenesis Myocardial infarction 



This work was supported by the National Natural Science Funds for Youth (no. 81100107, to Bian Suyan). We thank Professor Zikuan Guo for providing the human bone marrow MSCs and the HUVEC cells and critical review of this manuscript.

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.


  1. 1.
    Mollmann H, Nef H, Elsasser A, Hamm C (2009) Stem cells in myocardial infarction: from bench to bedside. Heart 95:508–514PubMedCrossRefGoogle Scholar
  2. 2.
    Rose RA, Jiang H, Wang X, Helke S, Tsoporis JN, Gong N, Keating SC, Parker TG, Backx PH, Keating A (2008) Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro. Stem Cells 26:2884–2892PubMedCrossRefGoogle Scholar
  3. 3.
    Barbash IM, Chouraqui P, Baron J, Feinberg MS, Etzion S, Tessone A, Miller L, Guetta E, Zipori D, Kedes LH et al (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 108:863–868PubMedCrossRefGoogle Scholar
  4. 4.
    Winkler T, von Roth P, Schuman MR, Sieland K, Stoltenburg-Didinger G, Taupitz M, Perka C, Duda GN, Matziolis G (2008) In vivo visualization of locally transplanted mesenchymal stem cells in the severely injured muscle in rats. Tissue Eng A 14:1149–1160CrossRefGoogle Scholar
  5. 5.
    Bennett M, Yu H, Clarke M (2012) Signalling from dead cells drives inflammation and vessel remodelling. Vascul Pharmacol 56:187–192PubMedCrossRefGoogle Scholar
  6. 6.
    Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219PubMedCrossRefGoogle Scholar
  7. 7.
    Lo EH (2008) A new penumbra: transitioning from injury into repair after stroke. Nat Med 14:497–500PubMedCrossRefGoogle Scholar
  8. 8.
    Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78:838–848PubMedCrossRefGoogle Scholar
  9. 9.
    Quesenberry PJ, Dooner MS, Aliotta JM (2010) Stem cell plasticity revisited: the continuum marrow model and phenotypic changes mediated by microvesicles. Exp Hematol 38:581–592PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Camussi G, Deregibus MC, Tetta C (2010) Paracrine/endocrine mechanism of stem cells on kidney repair: role of microvesicle-mediated transfer of genetic information. Curr Opin Nephrol Hypertens 19:7–12PubMedCrossRefGoogle Scholar
  11. 11.
    Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, Ratajczak MZ (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20:847–856PubMedCrossRefGoogle Scholar
  12. 12.
    Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, Biancone L, Bruno S, Bussolati B, Camussi G (2007) Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 110:2440–2448PubMedCrossRefGoogle Scholar
  13. 13.
    Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, Morando L, Busca A, Falda M, Bussolati B et al (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 20:1053–1067PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, El Oakley RM et al (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4:214–222PubMedCrossRefGoogle Scholar
  15. 15.
    Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, Ganesan S, Glod JW, Banerjee D (2008) Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 68:4331–4339PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Zhang HC, Liu XB, Huang S, Bi XY, Wang HX, Xie LX, Wang YQ, Cao XF, Lv J, Xiao FJ et al (2012) Microvesicles derived from human umbilical cord mesenchymal stem cells stimulated by hypoxia promote angiogenesis both in vitro and in vivo. Stem Cells Dev 21:3289–3297PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Combes V, Simon AC, Grau GE, Arnoux D, Camoin L, Sabatier F, Mutin M, Sanmarco M, Sampol J, Dignat-George F (1999) In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant. J Clin Invest 104:93–102PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Distler JH, Jungel A, Huber LC, Seemayer CA, Reich CF 3rd, Gay RE, Michel BA, Fontana A, Gay S, Pisetsky DS et al (2005) The induction of matrix metalloproteinase and cytokine expression in synovial fibroblasts stimulated with immune cell microparticles. Proc Natl Acad Sci U S A 102:2892–2897PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Brill A, Dashevsky O, Rivo J, Gozal Y, Varon D (2005) Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res 67:30–38PubMedCrossRefGoogle Scholar
  20. 20.
    Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol Chapter 3:Unit 3 22Google Scholar
  21. 21.
    Atay S, Gercel-Taylor C, Kesimer M, Taylor DD (2011) Morphologic and proteomic characterization of exosomes released by cultured extravillous trophoblast cells. Exp Cell Res 317:1192–1202PubMedCrossRefGoogle Scholar
  22. 22.
    Matera G, Lupi M, Ubezio P (2004) Heterogeneous cell response to topotecan in a CFSE-based proliferation test. Cytometry A 62:118–128PubMedCrossRefGoogle Scholar
  23. 23.
    Aoki N, Yokoyama R, Asai N, Ohki M, Ohki Y, Kusubata K, Heissig B, Hattori K, Nakagawa Y, Matsuda T (2010) Adipocyte-derived microvesicles are associated with multiple angiogenic factors and induce angiogenesis in vivo and in vitro. Endocrinology 151:2567–2576PubMedCrossRefGoogle Scholar
  24. 24.
    Duan HF, Wang H, Yi J, Liu HJ, Zhang QW, Li LB, Zhang T, Lu Y, Wu CT, Wang LS (2007) Adenoviral gene transfer of sphingosine kinase 1 protects heart against ischemia/reperfusion-induced injury and attenuates its postischemic failure. Hum Gene Ther 18:1119–1128PubMedCrossRefGoogle Scholar
  25. 25.
    Scorsin M, Hagege A, Vilquin JT, Fiszman M, Marotte F, Samuel JL, Rappaport L, Schwartz K, Menasche P (2000) Comparison of the effects of fetal cardiomyocyte and skeletal myoblast transplantation on postinfarction left ventricular function. J Thorac Cardiovasc Surg 119:1169–1175PubMedCrossRefGoogle Scholar
  26. 26.
    Sia YT, Parker TG, Tsoporis JN, Liu P, Adam A, Rouleau JL (2002) Long-term effects of carvedilol on left ventricular function, remodeling, and expression of cardiac cytokines after large myocardial infarction in the rat. J Cardiovasc Pharmacol 39:73–87PubMedCrossRefGoogle Scholar
  27. 27.
    Pantos C, Mourouzis I, Markakis K, Dimopoulos A, Xinaris C, Kokkinos AD, Panagiotou M, Cokkinos DV (2007) Thyroid hormone attenuates cardiac remodeling and improves hemodynamics early after acute myocardial infarction in rats. Eur J Cardiothorac Surg 32:333–339PubMedCrossRefGoogle Scholar
  28. 28.
    Salomon C, Ryan J, Sobrevia L, Kobayashi M, Ashman K, Mitchell M, Rice GE (2013) Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. PLoS One 8:e68451PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Hugel B, Martinez MC, Kunzelmann C, Freyssinet JM (2005) Membrane microparticles: two sides of the coin. Physiology (Bethesda) 20:22–27CrossRefGoogle Scholar
  30. 30.
    Lavrentieva A, Majore I, Kasper C, Hass R (2010) Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells. Cell Commun Signal 8:18PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Nekanti U, Dastidar S, Venugopal P, Totey S, Ta M (2010) Increased proliferation and analysis of differential gene expression in human Wharton’s jelly-derived mesenchymal stromal cells under hypoxia. Int J Biol Sci 6:499–512PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Yu X, Deng L, Wang D, Li N, Chen X, Cheng X, Yuan J, Gao X, Liao M, Wang M et al (2012) Mechanism of TNF-alpha autocrine effects in hypoxic cardiomyocytes: initiated by hypoxia inducible factor 1alpha, presented by exosomes. J Mol Cell Cardiol 53:848–857PubMedCrossRefGoogle Scholar
  33. 33.
    King HW, Michael MZ, Gleadle JM (2012) Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer 12:421PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Hung SP, Ho JH, Shih YR, Lo T, Lee OK (2012) Hypoxia promotes proliferation and osteogenic differentiation potentials of human mesenchymal stem cells. J Orthop Res 30:260–266PubMedCrossRefGoogle Scholar
  35. 35.
    Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, Mu H, Melo LG, Pratt RE, Ingwall JS et al (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 20:661–669PubMedCrossRefGoogle Scholar
  36. 36.
    Noiseux N, Gnecchi M, Lopez-Ilasaca M, Zhang L, Solomon SD, Deb A, Dzau VJ, Pratt RE (2006) Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther 14:840–850PubMedCrossRefGoogle Scholar
  37. 37.
    Tang YL, Zhao Q, Qin X, Shen L, Cheng L, Ge J, Phillips MI (2005) Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg 80:229–236, discussion 236–227PubMedCrossRefGoogle Scholar
  38. 38.
    Timmers L, Lim SK, Hoefer IE, Arslan F, Lai RC, van Oorschot AA, Goumans MJ, Strijder C, Sze SK, Choo A et al (2011) Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Res 6:206–214PubMedCrossRefGoogle Scholar
  39. 39.
    Wang J, Najjar A, Zhang S, Rabinovich B, Willerson JT, Gelovani JG, Yeh ET (2012) Molecular imaging of mesenchymal stem cell: mechanistic insight into cardiac repair after experimental myocardial infarction. Circ Cardiovasc Imaging 5:94–101PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Gatti S, Bruno S, Deregibus MC, Sordi A, Cantaluppi V, Tetta C, Camussi G (2011) Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant 26:1474–1483PubMedCrossRefGoogle Scholar
  42. 42.
    Svensson KJ, Kucharzewska P, Christianson HC, Skold S, Lofstedt T, Johansson MC, Morgelin M, Bengzon J, Ruf W, Belting M (2011) Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2-mediated heparin-binding EGF signaling in endothelial cells. Proc Natl Acad Sci U S A 108:13147–13152PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Kim HS, Choi DY, Yun SJ, Choi SM, Kang JW, Jung JW, Hwang D, Kim KP, Kim DW (2012) Proteomic analysis of microvesicles derived from human mesenchymal stem cells. J Proteome Res 11:839–849PubMedCrossRefGoogle Scholar
  44. 44.
    Benameur T, Soleti R, Porro C, Andriantsitohaina R, Martinez MC (2010) Microparticles carrying Sonic hedgehog favor neovascularization through the activation of nitric oxide pathway in mice. PLoS One 5:e12688PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Chen TS, Lai RC, Lee MM, Choo AB, Lee CN, Lim SK (2010) Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res 38:215–224PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Collino F, Deregibus MC, Bruno S, Sterpone L, Aghemo G, Viltono L, Tetta C, Camussi G (2010) Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One 5:e11803PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Bruno S, Camussi G (2013) Role of mesenchymal stem cell-derived microvesicles in tissue repair. Pediatr Nephrol 28:2249–2254PubMedCrossRefGoogle Scholar
  48. 48.
    Li J, Zhang Y, Liu Y, Dai X, Li W, Cai X, Yin Y, Wang Q, Xue Y, Wang C et al (2013) Microvesicle-mediated transfer of microRNA-150 from monocytes to endothelial cells promotes angiogenesis. J Biol Chem 288:23586–23596PubMedCrossRefGoogle Scholar
  49. 49.
    Wang M, Tan J, Coffey A, Fehrenbacher J, Weil BR, Meldrum DR (2009) Signal transducer and activator of transcription 3-stimulated hypoxia inducible factor-1alpha mediates estrogen receptor-alpha-induced mesenchymal stem cell vascular endothelial growth factor production. J Thorac Cardiovasc Surg 138:163–171, 171 e161PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Hu X, Yu SP, Fraser JL, Lu Z, Ogle ME, Wang JA, Wei L (2008) Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg 135:799–808PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Suyan Bian
    • 1
  • Liping Zhang
    • 1
    Email author
  • Liufa Duan
    • 1
  • Xi Wang
    • 1
  • Ying Min
    • 1
  • Hepeng Yu
    • 1
  1. 1.The Second Department of Geriatric CardiologyChinese PLA General HospitalBeijingChina

Personalised recommendations