Advertisement

Journal of Molecular Medicine

, Volume 92, Issue 2, pp 151–164 | Cite as

Ganetespib blocks HIF-1 activity and inhibits tumor growth, vascularization, stem cell maintenance, invasion, and metastasis in orthotopic mouse models of triple-negative breast cancer

  • Lisha Xiang
  • Daniele M. Gilkes
  • Pallavi Chaturvedi
  • Weibo Luo
  • Hongxia Hu
  • Naoharu Takano
  • Houjie Liang
  • Gregg L. SemenzaEmail author
Original Article

Abstract

Targeted therapy against triple-negative breast cancers, which lack expression of the estrogen, progesterone, and HER2 receptors, is not available and the overall response to cytotoxic chemotherapy is poor. One of the molecular hallmarks of triple-negative breast cancers is increased expression of genes that are transcriptionally activated by hypoxia-inducible factors (HIFs), which are implicated in many critical aspects of cancer progression including metabolism, angiogenesis, invasion, metastasis, and stem cell maintenance. Ganetespib is a second-generation inhibitor of heat shock protein 90 (HSP90), a molecular chaperone that is essential for the stability and function of multiple client proteins in cancer cells including HIF-1α. In this study, human MDA-MB-231 and MDA-MB-435 triple-negative breast cancer cells were injected into the mammary fat pad of immunodeficient mice that received weekly intravenous injections of ganetespib or vehicle following the development of palpable tumors. Ganetespib treatment markedly impaired primary tumor growth and vascularization, and eliminated local tissue invasion and distant metastasis to regional lymph nodes and lungs. Ganetespib treatment also significantly reduced the number of Aldefluor-positive cancer stem cells in the primary tumor. Primary tumors of ganetespib-treated mice had significantly reduced levels of HIF-1α (but not HIF-2α) protein and of HIF-1 target gene mRNAs encoding proteins that play key roles in angiogenesis, metabolism, invasion, and metastasis, thereby providing a molecular basis for observed effects of the drug on the growth and metastasis of triple-negative breast cancer.

Key Messages

  • Triple-negative breast cancers (TNBCs) respond poorly to available chemotherapy.

  • TNBCs overexpress genes regulated by hypoxia-inducible factors (HIFs).

  • Ganetespib induces degradation of HSP90 client proteins, including HIF-1α.

  • Ganetespib inhibited TNBC orthotopic tumor growth, invasion, and metastasis.

  • Ganetespib inhibited expression of HIF-1 target genes involved in TNBC progression.

Keywords

Hypoxia-inducible factor 1 Ganetespib Hsp90 inhibitor Breast cancer metastasis Cancer stem cell 

Notes

Acknowledgments

We thank Karen Padgett (Novus Biologicals) for providing antibodies against HIF-1β, HIF-2α, Ki67, and P4HA1. This work was supported in part by a sponsored research agreement with Synta Pharmaceuticals Corp., which provided ganetespib and vehicle but had no involvement in the experimental design, data analysis, or manuscript preparation.

Disclosure statement

G.L.S. is the C. Michael Armstrong Professor at the Johns Hopkins University School of Medicine and an American Cancer Society Research Professor. L.X., D.M.G., and W.L. were supported by grants from the Chinese Scholarship Council, Susan G. Komen Foundation, and National Cancer Institute (K99-CA168746), respectively. All authors confirm that there is no conflict of interest associated with this publication.

References

  1. 1.
    Vaupel P, Hockel M, Mayer A (2007) Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal 9:1221–1235PubMedCrossRefGoogle Scholar
  2. 2.
    Semenza GL (2013) Cancer-stromal cell interactions mediated by hypoxia-inducible factors promote angiogenesis, lymphangiogenesis, and metastasis. Oncogene 32:4057–4063PubMedCrossRefGoogle Scholar
  3. 3.
    Semenza GL (2013) HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest 123:3664–3671PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604–4613PubMedCentralPubMedGoogle Scholar
  5. 5.
    Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864PubMedCrossRefGoogle Scholar
  6. 6.
    Chaturvedi P, Gilkes DM, Wong CC, Kshitiz LW, Zhang H, Wei H, Takano N, Schito L, Levchenko A et al (2013) Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. J Clin Invest 123:189–205PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Choi JY, Jang YS, Min SY, Song JY (2011) Overexpression of MMP-9 and HIF-1α in breast cancer cells under hypoxic conditions. J Breast Cancer 14:88–95PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Gilkes DM, Chaturvedi P, Bajpai S, Wong CC, Wei H, Pitcairn S, Hubbi ME, Wirtz D, Semenza GL (2013) Collagen prolyl hydroxylases are essential for breast cancer metastasis. Cancer Res 73:3285–3296PubMedCrossRefGoogle Scholar
  9. 9.
    Erler JT, Bennewith KL, Nicolau M, Dornhöfer N, Kong C, Le QT, Chi JT, Jeffrey SS, Giaccia AJ (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440:1222–1226PubMedCrossRefGoogle Scholar
  10. 10.
    Wong CC, Gilkes DM, Zhang H, Chen J, Wei H, Chaturvedi P, Fraley SI, Wong CM, Khoo US, Ng IO et al (2011) Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proc Natl Acad Sci U S A 108:16369–16374PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Zhang H, Wong CC, Wei H, Gilkes DM, Korangath P, Chaturvedi P, Schito L, Chen J, Krishnamachary B, Winnard PT Jr et al (2012) HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs. Oncogene 31:1757–1770PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Conley SJ, Gheordunescu E, Kakarala P, Newman B, Korkaya H, Heath AN, Clouthier SG, Wicha MS (2012) Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci U S A 109:2784–2789PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Schwab LP, Peacock DL, Majumdar D, Ingels JF, Jensen LC, Smith KD, Cushing RC, Seagroves TN (2012) Hypoxia-inducible factor 1α promotes primary tumor growth and tumor-initiating cell activity in breast cancer. Breast Cancer Res 14:R6PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92:5510–5514PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Prabhakar NR, Semenza GL (2012) Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev 92:967–1003PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Minet E, Mottet D, Michel G, Roland I, Raes M, Remacle J, Michiels C (1999) Hypoxia-induced activation of HIF-1: role of HIF-1α-Hsp90 interaction. FEBS Lett 460:251–256PubMedCrossRefGoogle Scholar
  17. 17.
    Isaacs JS, Jung YJ, Mimnaugh EG, Martinez A, Cuttitta F, Neckers LM (2002) Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1α-degradative pathway. J Biol Chem 277:29936–29944PubMedCrossRefGoogle Scholar
  18. 18.
    Isaacs JS, Jung YJ, Neckers L (2004) Aryl hydrocarbon nuclear translocator (ARNT) promotes oxygen-independent stabilization of hypoxia-inducible factor-1α by modulating an Hsp90-dependent regulatory pathway. J Biol Chem 279:16128–16135PubMedCrossRefGoogle Scholar
  19. 19.
    Katschinski DM, Schindler SG, Thomas T, Voss AK, Wenger RH (2004) Interaction of the PAS B domain with HSP90 accelerates hypoxia-inducible factor 1α stabilization. Cell Physiol Biochem 14:351–360PubMedCrossRefGoogle Scholar
  20. 20.
    Liu YV, Baek JH, Zhang H, Diez R, Cole RN, Semenza GL (2007) RACK1 competes with HSP90 for binding to HIF-1α and is required for O2-independent and HSP90 inhibitor-induced degradation of HIF-1α. Mol Cell 25:207–217PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Cleator S, Heller W, Coombes RC (2007) Triple-negative breast cancer: therapeutic options. Lancet Oncol 8:235–244PubMedCrossRefGoogle Scholar
  22. 22.
    Caldas-Lopes E, Cerchietti L, Ahn JH, Clement CC, Robles AI, Rodina A, Moulick K, Taldone T, Gozman A, Guo Y et al (2009) Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc Natl Acad Sci U S A 106:8368–8373PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Mehta PP, Whalen P, Baxi SM, Kung PP, Yamazaki S, Yin M (2011) Effective targeting of triple-negative breast cancer cells by PF-4942847, a novel oral inhibitor of Hsp90. Clin Cancer Res 17:5432–5442PubMedCrossRefGoogle Scholar
  24. 24.
    Friedland JC, Smith DL, Sang J, Acquaviva J, He S, Zhang C, Proia DA (2013) Targeted inhibition of Hsp90 by ganetespib is effective across a broad spectrum of breast cancer subtypes. Invest New Drugs 2013 May 18 [Epub ahead of print]Google Scholar
  25. 25.
    Ying W, Du Z, Sun L, Foley KP, Proia DA, Blackman RK, Zhou D, Inoue T, Tatsuta N, Sang J et al (2012) Ganetespib, a unique triazolone-containing Hsp90 inhibitor, exhibits potent antitumor activity and a superior safety profile for cancer therapy. Mol Cancer Ther 11:475–484PubMedCrossRefGoogle Scholar
  26. 26.
    Shimamura T, Perera SA, Foley KP, Sang J, Rodig SJ, Inoue T, Chen L, Li D, Carretero J, Li Y et al (2012) Ganetespib (STA-9090), a nongeldanamycin HSP90 inhibitor, has potent antitumor activity in in vitro and in vivo models of non-small cell lung cancer. Clin Cancer Res 18:4973–4985PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Schito L, Rey S, Tafani M, Zhang H, Wong CC, Russo A, Russo MA, Semenza GL (2012) Hypoxia-inducible factor 1-dependent expression of platelet-derived growth factor B promotes lymphatic metastasis of hypoxic breast cancer cells. Proc Natl Acad Sci U S A 109:E2707–E2716PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Lee K, Zhang H, Qian DZ, Rey S, Liu JO, Semenza GL (2009) Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization. Proc Natl Acad Sci U S A 106:17910–17915PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Krishnamachary B, Semenza GL (2007) Analysis of hypoxia-inducible factor 1α expression and its effects on invasion and metastasis. Methods Enzymol 435:347–354PubMedCrossRefGoogle Scholar
  30. 30.
    Ruifrok AC, Johnston DA (2001) Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol 23:291–299PubMedGoogle Scholar
  31. 31.
    Cailleau R, Young R, Olive M, Reeves WJ Jr (1974) Breast tumor cell lines from pleural effusions. J Natl Cancer Inst 53:661–674PubMedGoogle Scholar
  32. 32.
    Chambers AF (2009) MDA-MB-435 and M14 cell lines: identical but not M14 melanoma? Cancer Res 69:5292–5293PubMedCrossRefGoogle Scholar
  33. 33.
    Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, Hur MH, Diebel ME, Monville F, Dutcher J et al (2009) Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69:1302–1313PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Marcato P, Dean CA, Giacomantonio CA, Lee PW (2011) Aldehyde dehydrogenase: its role as a cancer stem cell marker comes down to the specific isoform. Cell Cycle 10:1378–1384PubMedCrossRefGoogle Scholar
  36. 36.
    Ganji PN, Park W, Wen J, Mahaseth H, Landry J, Farris AB, Willingham F, Sullivan PS, Proia DA, El-Hariry I et al (2013) Antiangiogenic effects of ganetespib in colorectal cancer mediated through inhibition of HIF-1α and STAT-3. Angiogenesis 16:903–917PubMedCrossRefGoogle Scholar
  37. 37.
    Bhola NE, Balko JM, Dugger TC, Kuba MG, Sanchez V, Sanders M, Stanford J, Cook RS, Arteaga CL (2013) TGF-β inhibition enhances chemotherapy action against triple-negative breast cancer. J Clin Invest 123:1348–1358PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    The Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumors. Nature 490:61–70PubMedCentralCrossRefGoogle Scholar
  39. 39.
    Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29:625–634PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lisha Xiang
    • 1
    • 2
    • 5
  • Daniele M. Gilkes
    • 1
    • 2
  • Pallavi Chaturvedi
    • 1
    • 2
  • Weibo Luo
    • 1
    • 3
  • Hongxia Hu
    • 1
    • 2
  • Naoharu Takano
    • 1
    • 2
  • Houjie Liang
    • 5
  • Gregg L. Semenza
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Vascular ProgramInstitute for Cell EngineeringBaltimoreUSA
  2. 2.McKusick-Nathans Institute of Genetic MedicineBaltimoreUSA
  3. 3.Department of Biological ChemistryJohns Hopkins University School of MedicineBaltimoreUSA
  4. 4.Departments of Pediatrics, Oncology, Medicine, and Radiation OncologyJohns Hopkins University School of MedicineBaltimoreUSA
  5. 5.Department of Oncology and Southwest Cancer CenterSouthwest Hospital, Third Military Medical UniversityChongqingChina

Personalised recommendations