Journal of Molecular Medicine

, Volume 92, Issue 1, pp 65–76 | Cite as

Targeted therapy by gene transfer of a monovalent antibody fragment against the Met oncogenic receptor

  • Elisa VignaEmail author
  • Giovanni Pacchiana
  • Cristina Chiriaco
  • Simona Cignetto
  • Lara Fontani
  • Paolo Michieli
  • Paolo M. ComoglioEmail author
Original Article


Due to the key role played in critical sub-populations, Met is considered a relevant therapeutic target for glioblastoma multiforme and lung cancers. The anti-Met DN30 antibody, engineered to a monovalent Fab (Mv-DN30), proved to be a potent antagonist, inducing physical removal of Met receptor from the cell surface. In this study, we designed a gene therapy approach, challenging Mv-DN30 in preclinical models of Met-driven human glioblastoma and lung carcinoma. Mv-DN30 was delivered by a Tet-inducible-bidirectional lentiviral vector. Gene therapy solved the limitations dictated by the short half-life of the low molecular weight form of the antibody. In vitro, upon doxycycline induction, the transgene: (1) drove synthesis and secretion of the correctly assembled Mv-DN30; (2) triggered the displacement of Met receptor from the surface of target cancer cells; (3) suppressed the Met-mediated invasive growth phenotype. Induction of transgene expression in cancer cells—transplanted either subcutaneously or orthotopically in nude mice—resulted in inhibition of tumor growth. Direct Mv-DN30 gene transfer in nude mice, intra-tumor or systemic, was followed by a therapeutic response. These results provide proof of concept for a gene transfer immunotherapy strategy by a Fab fragment and encourage clinical studies targeting Met-driven cancers with Mv-DN30.

Key message

  • Gene transfer allows the continuous in vivo production of therapeutic Fab fragments.

  • Mv-DN30 is an excellent tool for the treatment of Met-driven cancers.

  • Mv-DN30 gene therapy represents an innovative route for Met targeting.


Cancer Targeted therapy Gene therapy Met Antibody Lentiviral vector 



We thank Livio Trusolino for critical reading of the manuscript, Manuela Cazzanti and Maria Galluzzo for help in animal experiments, Francesco Sassi and Stefania Giove for help in histological analysis. This work was supported by AIRC grants (IG Project no. 11852 and 2010 Special Program Molecular Clinical Oncology 5xMille, Project no. 9970) to PMC, by European Community’s Seventh Framework Programme FP7/2007-2011 under grant agreement no. 201279 and no. 201640 to PMC and by ‘Metheresis Translational Research SA’ grant to the University of Torino.

Conflict of interest

PMC and PM are consultants of Metheresis Translational Research SA. The other authors declare no potential conflict of interest.


  1. 1.
    Martini M, Secchione L, Siena S, Tejpar S, Bardelli A (2011) Targeted therapies: how personal should we go? Nat Rev Clin Oncol 9:87–97PubMedCrossRefGoogle Scholar
  2. 2.
    De Bacco F, Casanova E, Medico E, Pellegatta S, Orzan F, Albano R, Luraghi P, Reato G, D’Ambrosio A, Porrati P et al (2012) The MET oncogene is a functional marker of a glioblastoma stem cell subtype. Cancer Res 72:4537–4550PubMedCrossRefGoogle Scholar
  3. 3.
    Janku F, Stewart DJ, Kurzrock R (2010) Targeted therapy in non-small-cell lung cancer-is it becoming a reality? Nat Rev Clin Oncol 7:401–414PubMedCrossRefGoogle Scholar
  4. 4.
    Wheeler DL, Dunn EF, Harari PM (2010) Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat Rev Clin Oncol 7:493–507PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316:1039–1043PubMedCrossRefGoogle Scholar
  6. 6.
    Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L, Chitale D, Motoi N, Szoke J, Broderick S et al (2007) MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A 104:20932–20937PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Gherardi E, Birchmeier W, Birchmeier C, Vande Woude G (2012) Targeting MET in cancer: rationale and progress. Nat Rev Cancer 12:89–103PubMedCrossRefGoogle Scholar
  8. 8.
    Prat M, Crepaldi T, Pennacchietti S, Bussolino F, Comoglio PM (1998) Agonistic monoclonal antibodies against the Met receptor dissect the biological responses to HGF. J Cell Sci 111:237–247PubMedGoogle Scholar
  9. 9.
    Vigna E, Pacchiana G, Mazzone M, Chiriaco C, Fontani L, Basilico C, Pennacchietti S, Comoglio PM (2008) “Active” cancer immunotherapy by anti-Met antibody gene transfer. Cancer Res 68:9176–9183PubMedCrossRefGoogle Scholar
  10. 10.
    Petrelli A, Circosta P, Granziero L, Mazzone M, Pisacane A, Fenoglio S, Comoglio PM, Giordano S (2006) Ab-induced ectodomain shedding mediates hepatocyte growth factor receptor down-regulation and hampers biological activity. Proc Natl Acad Sci U S A 103:5090–5095PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Foveau B, Ancot F, Leroy C, Petrelli A, Reiss K, Vingtdeux V, Giordano S, Fafeur V, Tulasne D (2009) Down-regulation of the met receptor tyrosine kinase by presenilin-dependent regulated intramembrane proteolysis. Mol Biol Cell 20:2495–2507PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Schelter F, Kobuch J, Moss ML, Becherer JD, Comoglio PM, Boccaccio C, Kruger A (2010) A disintegrin and metalloproteinase-10 (ADAM-10) mediates DN30 antibody-induced shedding of the met surface receptor. J Biol Chem 285:26335–26340PubMedCrossRefGoogle Scholar
  13. 13.
    Michieli P, Mazzone M, Basilico C, Cavassa S, Sottile A, Naldini L, Comoglio PM (2004) Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell 6:61–73PubMedCrossRefGoogle Scholar
  14. 14.
    Pacchiana G, Chiriaco C, Stella MC, Petronzelli F, De Santis R, Galluzzo M, Carminati P, Comoglio PM, Michieli P, Vigna E (2010) Monovalency unleashes the full therapeutic potential of the DN-30 anti-Met antibody. J Biol Chem 285:36149–36157PubMedCrossRefGoogle Scholar
  15. 15.
    Urlinger S, Baron U, Thellmann M, Hasan MT, Bujard H, Hillen W (2000) Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci U S A 97:7963–7968PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Vigna E, Cavalieri S, Ailles L, Geuna M, Loew R, Bujard H, Naldini L (2002) Robust and efficient regulation of transgene expression in vivo by improved tetracycline-dependent lentiviral vectors. Mol Ther 5:252–261PubMedCrossRefGoogle Scholar
  17. 17.
    Follenzi A, Ailles LE, Bakovic S, Geuna M, Naldini L (2000) Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 25:217–222PubMedCrossRefGoogle Scholar
  18. 18.
    Lutterbach B, Zeng Q, Davis LJ, Hatch H, Hang G, Kohl NE, Gibbs JB, Pan BS (2007) Lung cancer cell lines harboring MET gene amplification are dependent on Met for growth and survival. Cancer Res 67:2081–2088PubMedCrossRefGoogle Scholar
  19. 19.
    Bertotti A, Burbridge MF, Gastaldi S, Salimi F, Torti D, Medico E, Giordano S, Corso S, Rolland-Valognes G, Lockhart BP et al (2009) Only a subset of Met-activated pathways are required to sustain oncogene addiction. Sci Signal 2:er11PubMedCrossRefGoogle Scholar
  20. 20.
    Chattopadhyay N, Butters RR, Brown EM (2001) Agonists of the retinoic acid- and retinoid X-receptors inhibit hepatocyte growth factor secretion and expression in U87 human astrocytoma cells. Brain Res Mol Brain Res 87:100–108PubMedCrossRefGoogle Scholar
  21. 21.
    Martens T, Schmidt NO, Eckerich C, Fillbrandt R, Merchant M, Schwall R, Westphal M, Lamszus K (2006) A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin Cancer Res 12:6144–6152PubMedCrossRefGoogle Scholar
  22. 22.
    Burgess T, Coxon A, Meyer S, Sun J, Rex K, Tsuruda T, Chen Q, Ho SY, Li L, Kaufman S et al (2006) Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Met-dependent human tumors. Cancer Res 66:1721–1729PubMedCrossRefGoogle Scholar
  23. 23.
    Zou HY, Li Q, Lee JH, Arango ME, McDonnell SR, Yamazaki S, Koudriakova TB, Alton G, Cui JJ, Kung PP et al (2007) An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res 67:4408–4417PubMedCrossRefGoogle Scholar
  24. 24.
    Follenzi A, Sabatino G, Lombardo A, Boccaccio C, Naldini L (2002) Efficient gene delivery and targeted expression to hepatocytes in vivo by improved lentiviral vectors. Hum Gene Ther 13:243–260PubMedCrossRefGoogle Scholar
  25. 25.
    Gillet JP, Macadangdang B, Fathke RL, Gottesman MM, Kimchi-Sarfaty C (2009) The development of gene therapy: from monogenic recessive disorders to complex diseases such as cancer. Methods Mol Biol 542:5–54PubMedCrossRefGoogle Scholar
  26. 26.
    Kaneda Y (2010) Update on non-viral delivery methods for cancer therapy: possibilities of a drug delivery system with anticancer activities beyond delivery as a new therapeutic tool. Expert Opin Drug Deliv 7:1079–1093PubMedCrossRefGoogle Scholar
  27. 27.
    Warnock JN, Daigre C, Al-Rubeai M (2011) Introduction to viral vectors. Methods Mol Biol 737:1–25PubMedCrossRefGoogle Scholar
  28. 28.
    Vigna E, Naldini L (2000) Lentiviral vectors: excellent tools for experimental gene transfer and promising candidates for gene therapy. J Gene Med 2:308–316PubMedCrossRefGoogle Scholar
  29. 29.
    Montini E, Cesana D, Schmidt M, Sancito F, Ponzoni M, Bartholomae C, Sergi Sergi L, Benedicenti F, Ambrosi A, Di Serio C et al (2006) Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 24:687–696PubMedCrossRefGoogle Scholar
  30. 30.
    Mátrai J, Chuah MK, VandenDriessche T (2010) Recent advances in lentiviral vector development and applications. Mol Ther 18:477–490PubMedCrossRefGoogle Scholar
  31. 31.
    De Palma M, Mazzieri R, Politi LS, Pucci F, Zonari E, Sitia G, Mazzoleni S, Moi D, Venneri MA, Indraccolo S et al (2008) Tumor-targeted interferon-alpha delivery by Tie2-expressing monocytes inhibits tumor growth and metastasis. Cancer Cell 14:299–311PubMedCrossRefGoogle Scholar
  32. 32.
    Sanz L, Compte M, Guijarro-Muñoz I, Álvarez-Vallina L (2012) Non-hematopoietic stem cells as factories for in vivo therapeutic protein production. Gene Ther 19:1–7PubMedCrossRefGoogle Scholar
  33. 33.
    Lal B, Xia S, Abounader R, Laterra J (2005) Targeting the c-Met pathway potentiates glioblastoma responses to gamma-radiation. Clin Cancer Res 11:4479–4486PubMedCrossRefGoogle Scholar
  34. 34.
    De Bacco F, Luraghi P, Medico E, Reato G, Girolami F, Perera T, Gabriele P, Comoglio PM, Boccaccio C (2011) Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. J Natl Cancer Inst 103:645–661PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Elisa Vigna
    • 1
    • 2
    Email author
  • Giovanni Pacchiana
    • 1
    • 2
  • Cristina Chiriaco
    • 1
  • Simona Cignetto
    • 1
    • 2
  • Lara Fontani
    • 1
  • Paolo Michieli
    • 1
    • 2
  • Paolo M. Comoglio
    • 1
    • 2
    Email author
  1. 1.IRCC, Institute for Cancer Research and Treatment at CandioloCandioloItaly
  2. 2.Department of OncologyUniversity of TurinCandioloItaly

Personalised recommendations